# Studies in Macrolide Synthesis: A Stereocontrolled Synthesis of Oleandolide Employing Reagent- and Substrate-Controlled Aldol Reactions of ( $S$ )-1-(Benzyloxy)-2-methylpentan-3-one 

Ian Paterson,* Roger D. Norcross, Richard A. Ward, Pedro Romea, and M. Anne Lister<br>Contribution from the University Chemical Laboratory, Cambridge University, Lensfield Road, Cambridge CB2 IEW, U.K.<br>Received July 18, 1994 ${ }^{\star}$


#### Abstract

A highly stereocontrolled total synthesis of oleandolide (2), the aglycon of the macrolide antibiotic oleandomycin (1), has been completed in $8 \%$ overall yield ( 20 steps longest linear sequence, 26 steps in total) with $90 \%$ overall diastereoselectivity. Initially, reagent-controlled syn aldol reactions of ( $S$ )-1-(benzyloxy)-2-methylpentan3 -one ((S)-8) were employed to prepare adducts $6(S S)$ and $7(S A)$, which were elaborated to provide the two advanced fragments 33 and 27, respectively. Coupling of these fragments followed by functional group manipulation and macrolactonization gave the macrocyclic ketone $\mathbf{4 2}$, possessing $S$ configuration at $\mathrm{C}_{9}$. Elaboration of $\mathbf{4 2}$ to oleandolide, however, proved troublesome. Substrate-controlled syn and anti aldol reactions of ketone ( $S$ )-8, meanwhile, provided the adducts $6(S S)$ and $7(A A)$, which enabled synthesis, via fragments 64 and $\mathbf{6 0}$, of the key macrocyclic ketone intermediate 69, having $R$ configuration at $\mathrm{C}_{9}$. Stereoselective epoxidation of ketone 69 , by reaction with dimethylsulfonium methylide under macrocyclic stereocontrol, provided the ( $8 R$ )-epoxide $\mathbf{8 3}$; subsequent elaboration then gave oleandolide (2).


## Introduction

Oleandomycin (1) is a 14 -membered macrolide antibiotic ${ }^{1}$ produced by the actinomycete Streptomyces antibioticus and originally reported by Sobin et al. in 1954. ${ }^{2}$ It was first chemically characterized in 1958, by Celmer and co-workers, ${ }^{3 a}$ as "a polyhydroxy, epoxy, polymethyl ketolactone of the macrolide type, containing glycosidically bound desosamine and L-oleandrose," and a partial structure was proposed at that time. The complete structure of oleandomycin was published in 1960 by Celmer, Woodward, and co-workers, ${ }^{3 \mathrm{~b}}$ while the absolute configuration was established in 1965 by Celmer, ${ }^{3 \mathrm{c}}$ and later confirmed by X-ray analysis of the $11,4^{\prime \prime}$-bis[ $O$ - $p$-bromobenzoyl)] derivative by Ogura et al. ${ }^{3 \mathrm{~d}}$

Oleandomycin shows moderately broad antibacterial activity, having a bacteriostatic rather than a bactericidal action. In common with several other macrolides, it inhibits bacterial RNA-dependent protein synthesis-by binding to the $50-\mathrm{S}$ ribosomal subunit and blocking either transpeptidation and/or translocation reactions-but does not affect bacterial nucleic acid synthesis. ${ }^{4}$ Oleandomycin is active against Gram-positive and some Gram-negative bacteria and is used widely in both clinical ${ }^{5 \mathrm{a}}$ and veterinary ${ }^{5 \mathrm{~b}}$ fields, principally as its triacetate (troleandomycin) but also as its phosphate derivative, as a treatment for bacterial infections. It has also been used as a feed additive to promote growth in poultry. ${ }^{5 b}$

A synthesis of oleandomycin which employs a carbohydratebased approach to construct the aglycon oleandolide (2) has

[^0]recently been completed by Tatsuta et al..$^{6,7}$ The glycosidation of oleandolide to provide the natural product has also been accomplished by Tatsuta's group, ${ }^{6 a}$ and thus a synthesis of 2 constitutes a formal total synthesis of oleandomycin. We now describe our successful efforts to synthesize this macrolide antibiotic, ${ }^{8,9}$ which inspired our development of new stereoselective methods for the construction of polypropionate-derived natural products. ${ }^{10}$

## Retrosynthetic Analysis

Oleandomycin, in common with the other macrolide antibiotics, presents a 3 -fold challenge to the synthetic chemist: ${ }^{11}$ firstly, the construction of a 14-membered lactone, in which the success or otherwise of any ring-closing reaction will depend critically on the conformations available to the seco-acid; secondly, the stereoselective construction of the 10 stereogenic centers of the macrolide ring; and thirdly, glycosidation-the stereo- and

[^1]
## Scheme 1





5
$\mathrm{C}_{8}-\mathrm{C}_{13}$ stereopentad
$\downarrow$
$4 X=S O_{n} \mathrm{Ph}$
$C_{1}-C_{7}$ stereopentad




$7(S A)$ or $7(A A)$
6 (SS)


regiocontrolled attachment of the sugars L-oleandrose (at $\mathrm{C}_{3}$ ) and D-desosamine (at $\mathrm{C}_{5}$ ). It was the fulfillment of the first and second challenges with which the work described in this paper was primarily concerned.

Our retrosynthetic analysis for oleandomycin is outlined in Scheme 1. The exocyclic epoxide at $\mathrm{C}_{8}$ of 2 is a unique structural feature of oleandolide, not found in any of the other known macrolide antibiotics, ${ }^{1}$ and it was envisaged that this sensitive functionality might be introduced late in the synthesis by manipulation of the $\mathrm{C}_{8}$ ketone in macrolide 3, possibly by using a sulfur ylide reagent. Alternatively, the $\mathrm{C}_{8}$ ketone of 3 might first be transformed to an exocyclic alkene which could then be epoxidized. The possibility of macrocyclic stereocontrol would be an important issue in these reactions.

[^2]Macrolide 3 was therefore identified as a pivotal synthetic target. The absolute configuration at $\mathrm{C}_{9}$ of $\mathbf{3}$ is not specified in Scheme 1. Work on the related macrolide antibiotic erythromycin has shown ${ }^{12}$ that the stereochemistry at $C_{9}$ is critically important in determining the efficiency of macrolactonization reactions ${ }^{11 \mathrm{c}}$ used to close the 14 -membered ring: changing the configuration at $\mathrm{C}_{9}$ has a profound effect on the conformations available to the seco-acid and hence on the success, or otherwise, of the macrolactonization. The choice of stereochemistry at $\mathrm{C}_{9}$ might also be important in allowing a hydroxyl-directed epoxidation of an exocyclic alkene at $\mathrm{C}_{8}$. Ideally, a strategy was desired that could construct 3 with either $R$ or $S$ stereochemistry at $\mathrm{C}_{9}$, in order that the effect of the configuration of this stereogenic center might be further investigated.

Disconnection of macrolide 3 to $\mathrm{C}_{1}-\mathrm{C}_{7}$ and $\mathrm{C}_{8}-\mathrm{C}_{13}$ stereopentad fragments 4 and 5 was considered attractive, since this would divide the molecule into two approximately equal segments thus constituting a highly convergent approach. The critical $\mathrm{C}_{7}-\mathrm{C}_{8}$ coupling and ring-forming reactions were planned to be nucleophilic addition of an anion of 4 (generated at $C_{7}, \alpha$ to a suitable charge-stabilizing sulfur substituent) to the $\mathrm{C}_{8}$ aldehyde 5 , followed by macrolactonization.

The array of alternating methyl and oxygenated functionalities around the lactone of 2 reveals the polyketide-derived biosynthetic origin of oleandomycin, ${ }^{13}$ and suggested to us that asymmetric aldol methodology ${ }^{14}$ might be applied to achieve a highly stereoselective synthesis. According to this strategy, fragments 4 and 5 should be available from $\beta$-hydroxyketones $6(S S)$ and 7 (SA or $A A$ ), respectively. ${ }^{15}$ Diol 4 would require a stereoselective hydroboration of $6(S S)$ to introduce the $\mathrm{C}_{6}$ stereogenic center, and a stereoselective ketone reduction to construct the $\mathrm{C}_{3}$ stereocenter. Meanwhile, another stereoselective ketone reduction was envisaged to set up the $\mathrm{C}_{11}$ stereocenter of 5 from 7, and a Cram-controlled addition of a methyl nucleophile onto an aldehyde was proposed to establish the $\mathrm{C}_{13}$ stereocenter. The choice of either a syn or an anti aldol for the $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment (i.e., 7 ( $S A$ or $A A$ )) would enable either the $9 S$ or the $9 R$ stereochemistry of macrolide 3 to be generated, respectively.

Since aldol products $6(S S)$ and 7 (SA or $A A$ ) should all originate from our dipropionate reagent ethyl ketone $(S)-8,{ }^{10 \mathrm{c}, \mathrm{d}, \mathrm{h}}$ this plan represented a particularly concise and highly convergent approach in which six of the ten stereocenters of macrolide 3 were to be constructed by two aldol reactions of the same ketone precursor.

## Results and Discussion

Synthesis of the Dipropionate Reagent: Chiral Ethyl Ketone (S)-8. Ketone ( $S$ )-8 was readily prepared by the

[^3]
## Scheme $\mathbf{2}^{a}$


${ }^{a}$ (a) $\mathrm{Cl}_{3} \mathrm{CC}(=\mathrm{NH}) \mathrm{OBn}$, catalytic TfOH, cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$, 16 h ; (b) $\mathrm{Me}(\mathrm{MeO}) \mathrm{NH} \cdot \mathrm{HCl}, \mathrm{AlMe}_{3}, \mathrm{PhMe}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (c) EtMgBr , $\mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
sequence of reactions depicted in Scheme 2. Thus, methyl ( $S$ )-$(+)$-3-hydroxy-2-methylpropionate (9) (Aldrich, $\geq 97 \%$ enantiomeric excess (ee)) was benzylated in good yield ( $81 \%$ ) using benzyl $2,2,2$-trichloroacetimidate as the benzylating agent ${ }^{16 \mathrm{a}}$ and triflic acid as the catalyst, with no loss of configurational purity at the stereogenic center $\alpha$ to the carbonyl. ${ }^{16 b}$ Ester 10 was then converted into $N$-methoxy- $N$-methylamide 11, ${ }^{17 \mathrm{a}}$ which was reacted with ethylmagnesium bromide ${ }^{17 \mathrm{~b}}$ to provide the desired chiral ethyl ketone $(S)-\mathbf{8}\left(73 \%\right.$ yield from $10,[\alpha]^{20}{ }_{\mathrm{D}}=+25.8^{\circ}$ (c $8.2, \mathrm{CHCl}_{3}$ ), $\geq 97 \% \mathrm{ee}^{18}$ ).

Synthesis of a Macrolide with $9 S$ Configuration. ReagentControlled Syn-Selective Aldol Reactions of Ethyl Ketone (S)-8. We elected first to direct our efforts toward a synthesis of the macrolide 3 bearing $S$ configuration at C 9 . Inspection of Scheme 1 reveals that this requires access to the two syn aldol adducts 6 ( $S S$ ) (for the $\mathrm{C}_{1}-\mathrm{C}_{7}$ segment) and 7 (SA) (for the $\mathrm{C}_{8}-\mathrm{C}_{13}$ segment), which we envisaged being obtained from the ( $Z$ )-enol borinate of ketone ( $S$ )-8.

Initially, the aldol reaction of ( $S$ )-8 using an achiral boron reagent was examined in order to ascertain whether there was any significant enolization stereoselectivity and/or enolate $\pi$-face diastereoselectivity arising from the ketone stereogenic center. By employing the sterically encumbered base diisopropylethylamine in the ${ }^{n} \mathrm{Bu}_{2} \mathrm{BOTf}$-mediated aldol reaction ${ }^{19}$ of ketone $(S) \cdot 8$ and methacrolein, selective ( $Z$ )-enol borinate formation and hence good syn diastereoselectivity could be obtained (syn: $a n t i=89: 11) .{ }^{10 c, 20}$ The syn aldol adducts were formed in almost equal amounts ( $S S: S A=54: 46$ ) which established that the $(Z)$ enol borinate of ketone ( $S$ )-8 bearing achiral ligands on the boron displays insignificant $\pi$-face selectivity in its aldol reactions; i.e., the influence of the $\alpha$ stereogenic center is negligible, and thus there is very low substrate control. This finding was important since it suggested that, in principle, the use of chiral ligands should allow reagent control of asymmetric induction in the boron-mediated aldol reactions of ketone ( $S$ )-8.

Employing the chiral boron reagent ( - )-diisopinocampheylboron triflate $\left((-)-(\mathrm{Ipc})_{2} \mathrm{BOTf}\right)^{21}$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ to enolize ethyl

[^4]Scheme $3^{a}$

${ }^{a}(\mathrm{a})(-)-(\mathrm{Ipc})_{2} \mathrm{BOTf}^{1}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (E)-MeCH= СНСНО, $0^{\circ} \mathrm{C}, 16 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $(+)$-(Ipc) $)_{2} \mathrm{BOTf},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CHO}, 0^{\circ} \mathrm{C}$, $16 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
ketone ( $S$ )-8 gave the corresponding ( $Z$ )-enol diisopinocampheylborinate 12 (Scheme 3). Addition of crotonaldehyde then provided the syn-anti aldol diastereomer 7 (SA), required for the $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment, with $89 \%$ diastereoselectivity and $73 \%$ yield. The syn-syn aldol diastereomer 7 (SS) was produced as the minor isomer, and $\leq 3 \%$ anti aldol diastereomers were observed. Similarly, the syn-syn aldol adduct 6 (SS), required for the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment, was prepared in $74 \%$ yield and with $90 \%$ diastereoselectivity via $(+ \text { )-(Ipc) })_{2}$ BOTf-mediated enolization of $(S)$-8, giving the ( $Z$ )-enol diisopinocampheylborinate 13 , followed in this case by addition of methacrolein. The synanti aldol adduct $6(S A)$ was now the minor diastereomer. In both cases, high-performance liquid chromatography (HPLC) on silica allowed separation of the aldol diastereomers. The high levels of asymmetric induction obtained in these reactions demonstrate the considerable degree of control obtainable with the chiral diisopinocampheylboron triflate reagents.

These results were as expected from the ( Ipc$)_{2}$ BOTf-mediated aldol reactions of achiral ethyl ketones with prochiral aldehydes. For the reactions of diethyl ketone and methacrolein or crotonaldehyde, for example, the syn aldol adducts are obtained with enantiomeric excesses of $86-91 \%$ when using the diisopinocampheylboron reagents (Scheme 4). ${ }^{10 \mathrm{a} . \mathrm{e}}$ The sense of asymmetric induction is the same as that observed for ketone (S)-8. Thus, syn aldol adduct 14 is afforded by use of the ( - )(Ipc) $)_{2}$ BOTf reagent, via the ( $Z$ )-enol borinate 15. Similarly, its enantiomer 16 is provided by the $(+)$-(Ipc) $)_{2}$ BOTf-derived ( $Z$ )-enol borinate 17.

A rationale for the sense of asymmetric induction in these (Ipc) ${ }_{2}$ BOTf-mediated aldol reactions has been provided by a computational study using transition state (TS) modeling. ${ }^{22}$ The calculated transition structures for the aldol reaction of the $(Z)$ enol diisopinocampheylborinate 18 of butanone with acetaldehyde are shown in Scheme $5\left(R^{1}=R^{2}=\mathrm{Me}\right)$. TS 19 was the lowest energy structure found for reaction on the si face of the aldehyde, whereas TS 20 was the lowest energy structure found for re-face attack. ${ }^{23}$ This latter TS is disfavored $(+1.4 \mathrm{kcal}$ $\mathrm{mol}^{-1}$ relative to 19), due largely to a steric interaction between the methyl group adjacent to the boron on the pseudoaxial Ipc ligand and the $\mathrm{R}^{1}$ group of the enolate. Thus, reaction preferentially occurs via TS 19 , in which the same methyl group is orientated more favorably toward the aldehyde hydrogen, i.e., away from the $\mathrm{R}^{1}$ group of the enolate. This would account

[^5]for the experimental observation of predominantly si-face attack when using the $(-)$-enantiomer of the reagent.

In TSs 19 and 20, the Ipc ligands hold the same relative orientation. A second TS was found for si-face attack ( 21 in Scheme 5), in which the two ligands hold a different relative orientation. However, this conformation was of significantly higher energy ( $+2.3 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to 19 ). From this we conclude that the pseudoequatorial Ipc ligand is not merely acting as a bulky group, but is serving to lock the pseudoaxial ligand in position in low-energy forms for both re- and si-face attack (i.e., TSs 19 and 20). Thus, both the pseudoaxial and the pseudoequatorial chiral ligands are important in determining $\pi$-face selectivity of the enol borinate.

Synthesis of the ( $9 S$ ) $-\mathrm{C}_{8}-\mathrm{C}_{13}$ Fragment. The ( - )-(Ipc) $\mathbf{2}_{2}$ BOTf-mediated asymmetric aldol methodology supplied $\beta$-hydroxyketone $7(S A)$ with three stereocenters ( $\mathrm{C}_{9}, \mathrm{C}_{10}$, and $\mathrm{C}_{12}$ ) correctly in place for the ( $9 S$ ) $-\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment of oleandolide. The next transformation required was introduction of the $\mathrm{C}_{11}$ stereocenter by directed reduction of the carbonyl group of 7 $(S A)$, i.e., $7(S A) \rightarrow \mathrm{C}_{9}, \mathrm{C}_{11}$ syn-diol 22 in Scheme 6. This was accomplished with $\geq 97 \%$ diastereoselectivity (ds) (single diastereomer by $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) and good yield (89\%) by employing a modification (using the more reactive $\mathrm{LiBH}_{4}$ in place of $\mathrm{NaBH}_{4}$ ) of the Narasaka reduction protocol. ${ }^{25}$ Thus, the dibutylboron aldolate 23 , derived from reaction of 7 (SA)


23
with di- $n$-butylmethoxyborane, was reduced in situ by treatment with lithium borohydride at $-78^{\circ} \mathrm{C}$; oxidative workup (hydrogen peroxide/pH 7 buffer) then gave the desired $\mathrm{C}_{9}, \mathrm{C}_{11}$ syndiol 22. ${ }^{26,27}$ The high diastereoselectivity obtained on reduction may be rationalized by stereoelectronically favored axial attack of borohydride preferentially on the less-hindered face of aldolate 23, which reacts in the most energetically favorable chair conformation shown. Attack on the lower face of $\mathbf{2 3}$ (as drawn) is impeded by the methyl and propenyl substituents.
Following uneventful protection of the two secondary hydroxyls of $\mathbf{2 2}$ as their tert-butyldimethylsilyl (TBS) ethers, to provide 24 in high yield ( $86 \%$ ), the next synthetic challenge

[^6]Scheme $\mathbf{4}^{a}$


14 ( $86-91 \%$ ee)
(syn:antl $295: 5$ )

16 ( $86-91 \%$ ee)
(syn:anti 295:5)

## $R^{1}=E t ; R^{2}=\mathrm{H}_{2} \mathrm{C}=\mathbf{C}(\mathrm{Me})-\mathrm{MeCH}=\mathrm{CH}-$.

${ }^{a}$ (a) ( - )-(Ipc) $)_{2} \mathrm{BOTf},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{R}^{2} \mathrm{CHO},-20$ ${ }^{\circ} \mathrm{C}, 16 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) (+)-(Ipc) ${ }_{2}$ BOTf, ${ }^{\prime} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{R}^{2} \mathrm{CHO},-20^{\circ} \mathrm{C}, 16 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} /$ pH 7 buffer, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
was the stereoselective introduction of a methyl substituent at $\mathrm{C}_{13}$. This we envisaged via addition to aldehyde 25. Such a plan required debenzylation of 24 and oxidation of the resulting $\mathrm{C}_{13}$ primary alcohol to provide the desired aldehyde. The presence of the double bond in $\mathbf{2 4}$ precluded hydrogenolysis of the benzyl ether. Debenzylation using a dissolving metal reduction (lithium in liquid ammonia/THF at $-78{ }^{\circ} \mathrm{C}$ ) was attempted, but unfortunately, under the polar reaction conditions, migration of TBS from the $\mathrm{C}_{11}$ oxygen to the newly formed $\mathrm{C}_{13}$ alkoxide was found to be a significant side reaction. Quantitative cleavage of the benzyl ether of 24 was effected without any accompanying TBS migration, however, by employing the lithium 4,4'-di-tert-butylbiphenyl (LiDBB) radical anion reagent ${ }^{28}$ in THF at $-78{ }^{\circ} \mathrm{C}$. Swern oxidation ${ }^{29}$ then gave the desired $\mathrm{C}_{13}$ aldehyde 25 in readiness for stereoselective methyl addition. During the oxidation, after addition of triethylamine at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm only to $-23^{\circ} \mathrm{C}$ before quenching in order to prevent $\beta$-elimination of the siloxy substituent, which was a significant problem at higher temperatures.

The $(9 S)-\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment of oleandolide required the Felkin-Cram ${ }^{30,31}$ product of methyl addition to aldehyde 25, and of a number of reagents screened, methylmagnesium chloride gave both the highest yield and highest stereoselectivity. Thus, addition of MeMgCl to $\mathbf{2 5}$ at low temperature ( $-100^{\circ} \mathrm{C}$ ) gave the desired ( $13 R$ )-alcohol 26 with $88 \%$ diastereoselectivity and in $\mathbf{7 3 \%}$ yield over the three steps from $24 .{ }^{32}$ HPLC allowed separation of 26 from the minor epimer. This completed the construction of the $\mathrm{C}_{9}-\mathrm{C}_{13}$ stereopentad in six steps from ( $S$ )8.

Protection of the $\mathrm{C}_{13}$ hydroxyl in $\mathbf{2 6}$ as the (benzyloxy)methyl (BOM) ether and subsequent ozonolysis with a reductive workup provided the $\mathrm{C}_{8}$ aldehyde 27 ( $92 \%$ yield over the two steps) in readiness for coupling with a nucleophilic $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment. The (9S) $-\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment 27 had been obtained in eight steps from ethyl ketone ( $\boldsymbol{S}$ ) $\mathbf{8}$ in $30 \%$ yield and with $76 \%$ overall diastereoselectivity.
(28) Ireland, R. E.; Smith, M. G. J. Am. Chem. Soc. 1988, 110, 854 and references cited therein.
(29) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(30) Cram, D. J.; Abd Elhafez, F. A. J. Am. Chem. Soc. 1952, 74, 5828.
(31) (a) Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. (b) Heathcock, C. H.; Flippin, L. A. J. Am. Chem. Soc. 1983, 105 , 1667. (c) Anh, N. T.; Thanh, B. T. Nouv. J. Chim. 1986, I0, 681.

## Scheme 5



Synthesis of the $\mathbf{C}_{1}-\mathbf{C}_{7}$ Fragment. Having obtained $\beta$-hydroxyketone 6 (SS) via $(+)$-(Ipc) ${ }_{2}$ BOTf-mediated aldol reaction of ketone ( $S$ ) $\mathbf{- 8}$, with three stereocenters $\left(\mathrm{C}_{2}, \mathrm{C}_{4}\right.$, and $\mathrm{C}_{5}$ ) correctly assembled for the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment of oleandolide, a stereoselective ketone reduction and a stereoselective alkene hydroboration were required next to set the $\mathrm{C}_{3}$ and $\mathrm{C}_{6}$ centers, respectively, i.e., $\mathbf{6}(S S) \rightarrow \mathbf{2 8}$ in Scheme 7. It was anticipated that this should be possible in a one-pot reaction of $6(S S)$ with the sterically demanding borane (Ipc) ${ }_{2} \mathrm{BH}^{34}$ Thus, treatment of $6(S S)$ with $(+)-(\mathrm{Ipc})_{2} \mathrm{BH}$ (3 equiv) in ether at $0 \rightarrow 20^{\circ} \mathrm{C}$, followed by oxidative workup with $m$-CPBA, gave three out of the four possible triols by HPLC analysis. These were the desired triol 28, a minor product epimeric at $\mathrm{C}_{6}$ (6-epi-28), and another minor product epimeric at $\mathrm{C}_{3}$ (3-epi-28) in a ratio of 90:5:5 and in a total yield of $69 \%$. By increasing the amount
(32) The $C_{13}$ configuration of alcohol 26 was assigned by analogy with the known sterochemical outcome of Grignard addition to aldehyde i , structurally similar to $\mathbf{2 5}$, which provided the ( $13 R$ )-alcohol ii with $89 \%$ ds as part of our earlier synthetic efforts directed at oleandomycin (see ref 7 b ). The configuration at $\mathrm{C}_{13}$ of ii was established by preparation of the dioxane iii. The vicinal coupling between $\mathrm{C}_{12} \mathrm{H}$ and $\mathrm{C}_{13} H(4.2 \mathrm{~Hz})$ of iii was typical of that expected for an axial-equatorial relationship. Note that the $\mathrm{C}_{13}$ configuration of ii is opposite to that originally reported (ref 7 b ), and Cram-chelate control (ref 33) in the Grignard addition to aldehyde 1 may be occurring.

(a) $\mathrm{MeMgCl}, \mathrm{THF},-100^{\circ} \mathrm{C}, 1 \mathrm{~h}$. (b) $\left(-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right) \mathrm{BCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(33) (a) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748. (b) Cram, D. J.; Wilson, D. R. J. Am. Chem. Soc. 1963, 85, 1245.
(34) (a) Brown, H. C.; Joshi, N. N. J. Org. Chem. 1988, 53, 4059. (b) For a review, see: Brown, H. C.; Jadhav, P. K.; Singaram, B. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1986; Vol. 4.

Scheme $6^{a}$

${ }^{a}$ (a) ${ }^{n} \mathrm{Bu}_{2} \mathrm{BOMe}$, THF/MeOH (5:1), $-78^{\circ} \mathrm{C}, 15 \mathrm{~min} ; \mathrm{LiBH}_{4},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) ${ }^{\mathrm{B}} \mathrm{BuMe}_{2} \mathrm{SiOTf}^{2}, 6-$ lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) $\mathrm{LiDBB}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{Et}_{3} \mathrm{~N},-23^{\circ} \mathrm{C}, 30 \mathrm{~min}$; aqueous $\mathrm{NH}_{4} \mathrm{Cl}$; (e) $\mathrm{MeMgCl}, \mathrm{THF},-100^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) $\mathrm{BnOCl},{ }^{'} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (g) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 15 \mathrm{~min} ; \mathrm{Me}_{2} \mathrm{~S}, 20^{\circ} \mathrm{C}, 15$ min .
of borane used from 3 to 5 equiv, triol 28 was obtained in an improved yield of $76 \%$ after chromatography. The stereochemical configuration of 28 was confirmed by conversion into trihydroxytosylate 29 , the spectral analysis of which correlated with material synthesized during our earlier approach to oleandomycin. ${ }^{7 \mathrm{~b}}$

Reaction of $\beta$-hydroxyketone 6 (SS) with the opposite chirality of the borane, i.e., $(-)-(\mathrm{Ipc})_{2} \mathrm{BH}$, still led to formation of triol 28 as the major product, but with reduced stereoselectivity ( $63 \% \mathrm{ds}$ ) and with 6 -epi-28 as the next most abundant product ( $26 \%$ ). This indicated that in the one-pot alkene hydroboration/ketone reduction of $\beta$-hydroxyketone $6(S S)$ there is a significant degree of substrate control of asymmetric induction. In the case of $(+)$-(Ipc) $)_{2} \mathrm{BH}$, the asymmetric influences of the substrate and reagent are matched; in the mis-

## Scheme 7a


${ }^{a}$ (a) (+)-(Ipc) ${ }_{2} \mathrm{BH}$ ( 3 equiv), $\mathrm{Et}_{2} \mathrm{O}, 0 \rightarrow 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; m$-CPBA, 1 h , $20^{\circ} \mathrm{C}$; (b) ( - )-(Ipc) ${ }_{2} \mathrm{BH}$ (3 equiv), $\mathrm{Et}_{2} \mathrm{O}, 0 \rightarrow 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; m$-CPBA, 1 h, $20^{\circ} \mathrm{C}$; (c) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) $\mathrm{H}_{2}, 10 \%$ $\mathrm{Pd} / \mathrm{C},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h} .{ }^{b}$ Ratio of isolated yields after chromatography. ${ }^{c}$ Combined yield of all isomers.

## Scheme 8




$\mathrm{H}_{2} \left\lvert\, \begin{aligned} & 1 \text { equiv. } \\ & \mathrm{ipc} \\ & 2\end{aligned} \mathrm{BH}\right.$


1 equiv.
lpcabH
matched situation, using the antipodal reagent, substrate control dominates over reagent control and the Ipc groups are to a large extent merely acting as bulky ligands.

The sense of stereochemical control due to the substrate may be rationalized according to existing models. On the basis of the experimental observation of gas evolution upon addition of the substrate to a solution of $(\mathrm{Ipc})_{2} \mathrm{BH}$, we hypothesize that, in the reaction using 3 equiv of the borane, the first equivalent of reagent discharges hydrogen from $\beta$-hydroxyketone 6 (SS) to form the boron aldolate 30 (Scheme 8 ). The formation of this aldolate should activate the carbonyl to reduction by a second equivalent of borane, with attack occurring preferentially from the less-hindered upper face (as drawn) of the six-membered chelate to provide borate 31 , and may account for the extremely high level of diastereoselectivity observed for the ketone reduction. ${ }^{35}$ Reaction with a third equivalent of reagent then leads to hydroboration of the alkene (in the stereochemical sense predicted by Still ${ }^{36}$ ) to provide 32, which upon oxidative workup yields triol 28. We have, however, been unable to establish unambiguously that ketone reduction precedes alkene hydrobo-

Scheme $9^{a}$

a (a) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (b) $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 15 \mathrm{~h}$; (c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{PhSLi}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (e) $\mathrm{NaIO}_{4}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 21 \mathrm{~h}$.
ration, and the two processes may well occur competitively. The scope of our hydroboration/reduction protocol has been extended to the preparation of other stereopentad systems. ${ }^{10 g}$
With the preparation of triol 28 accomplished, all of the five contiguous stereogenic centers spanning $\mathrm{C}_{2}-\mathrm{C}_{6}$ in oleandolide had now been constructed, in only two steps from ethyl ketone $(S)-8$. On the basis of our previous studies, ${ }^{7 b}$ we elected to convert 28 into the known phenyl sulfoxides 33 (Scheme 9) in readiness for coupling to aldehyde 27. Thus, selective tosylation of the $\mathrm{C}_{7}$ primary hydroxyl of 28 and subsequent protection of the two secondary hydroxyls as an acetonide provided 34 in $87 \%$ yield over the two steps. The use of a cyclic protecting group for the $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ hydroxyls was intended to introduce a degree of conformational rigidity to the seco-acid, which we anticipated would promote an efficient macrolactonization (vide infra). ${ }^{11}$ Hydrogenolysis of the $\mathrm{C}_{1}$ benzyl ether of $\mathbf{3 4}$ gave 35 in $92 \%$ yield. Introduction of sulfur, which was needed to direct deprotonation at $\mathrm{C}_{7}$ in the subsequent coupling reactions, was then accomplished by thiophenolate ion displacement of the tosyl group of 35 , affording the phenyl sulfide 36 in $99 \%$ yield. Compound 36 was identical in all respects with material synthesized during our earlier approach to oleandomycin. ${ }^{7 b}$ An uneventful periodate oxidation of 36 then gave a mixture of the diastereomeric sulfoxides $\mathbf{3 3}$, which were not separated, again in $99 \%$ yield. The $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment 33 had thus been synthesized in seven steps from ethyl ketone $(S)-8$ in an overall yield of $40 \%$ and with $81 \%$ diastereoselectivity.
Fragment Coupling and Macrolactonization. Optimum conditions for the coupling of the $\mathrm{C}_{1}-\mathrm{C}_{7}$ and $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragments involved lithiation of sulfoxides 33 with LDA ( 2.2 equiv) in DME at $-78{ }^{\circ} \mathrm{C}$, followed by addition of aldehyde $27(0.6$ equiv) at the same temperature (Scheme 10). This led to a complex mixture of adducts 37 in $88 \%$ yield ( $80 \%$ conversion of aldehyde), which were not separated. The excess sulfoxide used in the reaction could be recovered unchanged, after flash chromatography, and used in future reactions.
Desulfurization of adducts 37 was effected in $65 \%$ yield by treatment with W-2 Raney nickel in ether at room temperature. ${ }^{37}$ The combined mixture of isomeric diols resulting from the Raney nickel treatment ( $38+$ suspected $\mathrm{C}_{8}$ OTBS regioisomers) was then subjected to a two-step oxidation procedure involving initial Swern oxidation, ${ }^{29}$ to give the corresponding ketoaldehydes, followed by further oxidation to the $\mathrm{C}_{1}$ carboxylic acid 39 and its $\mathrm{C}_{8}$ OTBS regioisomer using Masamune's neutral

[^7]Scheme $10^{a}$

${ }^{a}$ (a) LDA (2.2 equiv), DME, $-78^{\circ} \mathrm{C}, 15 \mathrm{~min} ; 27,-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (b) W-2 Raney $\mathrm{Ni}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{Et} 3 \mathrm{~N},-23{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; aqueous $\mathrm{NH}_{4} \mathrm{Cl}$; (d) $\mathrm{KMnO}_{4},{ }^{\circ} \mathrm{BuOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (f) $2,4,6-$ $\mathrm{Cl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{COCl}, \mathrm{Et} 3 \mathrm{~N}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; add to DMAP, PhMe, $80^{\circ} \mathrm{C}, 3 \mathrm{~h} ;(\mathrm{g}) \mathrm{Ph}_{3} \mathrm{MeP}^{+} \mathrm{Br}^{-}, \mathrm{KHMDS}, \mathrm{PhMe}, 100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
conditions of buffered potassium permanganate. ${ }^{38}$ Finally, hydrogenolysis of the $\mathrm{C}_{13}$ (benzyloxy)methyl ether provided two hydroxy acids, separable by flash chromatography, in a ratio of $3.3: 1$ and in $67 \%$ overall yield from 38 . The major product was confirmed as the desired seco-acid $\mathbf{4 0}{ }^{-39}$

With seco-acid $\mathbf{4 0}$ thus in hand, albeit in a yield reduced by unwanted TBS migration, the critical macrolactonization step could be attempted. The conditions chosen for macrolactonization were those developed by Yamaguchi et al. ${ }^{40}$ which had been used with notable success in our earlier synthesis of ( 9 S )dihydroerythronolide A ( $91 \%$ macrolactonization yield). ${ }^{41}$ Accordingly, the mixed anhydride of seco-acid 40 was prepared by treatment with $2,4,6$-trichlorobenzoyl chloride and triethylamine in THF ( $2 \mathrm{~h}, 20^{\circ} \mathrm{C}$ ), and then added slowly ( 3 h ) by syringe pump as a dilute solution in toluene to a solution of DMAP in toluene at $80^{\circ} \mathrm{C}$. Gratifyingly, a $60 \%$ yield of macrolide 42 was obtained for this key reaction.

Attempted Olefination of Macrolide 44 and Related Modeling Studies. We envisaged that the exocyclic epoxide at $\mathrm{C}_{8}$ of oleandolide might be introduced via epoxidation of the alkene 43, which could conceivably be prepared by Wittig olefination of the macrolide $\mathbf{4 2}$ using triphenylphosphonium methylide $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}\right)$. Unfortunately, macrolide $\mathbf{4 2}$ proved resistant to attack by the phosphorus ylide, even at temperatures as high as $100^{\circ} \mathrm{C}$, and only unchanged starting material was

[^8]recovered from the reaction. The failure of $\mathbf{4 2}$ to undergo nucleophilic attack at $\mathrm{C}_{8}$ was rationalized by molecular modeling of the related macrolide $\mathbf{4 4}$ using MacroModel. ${ }^{42}$ In the lowest energy conformer of $\mathbf{4 4}$ (Scheme 10), attack on the re face of the $\mathrm{C}_{8}$ ketone is blocked by the OTMS group on $\mathrm{C}_{9}$ (dashed arrow), whereas $s i$-face attack is obstructed by the macrocyclic ring structure. Higher energy conformations (considered significant up to $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the ground state) showed a similar local conformation about the $\mathrm{C}_{8}$ ketone.

At this stage, we resolved to further examine the conformational requirements for olefination of macrolides possessing a ketone at $\mathrm{C}_{8}$, with a view to introduction of the $\mathrm{C}_{8}$ exocyclic epoxide needed for oleandolide, by investigating the $9 R$ epimer of $\mathbf{4 2}$, i.e., macrolide $\mathbf{4 5}$ (Scheme 11). Our initial retrosynthetic analysis (Scheme 1) revealed that the synthesis of a macrolide bearing $R$ configuration at $\mathrm{C}_{9}$ was indeed an option (vide infra). However, for the model studies, macrolide 45 was obtained by the sequence of reactions depicted in Scheme 11. Degradation of oleandomycin according to the procedure of Tatsuta et al. provided tetrol $46,{ }^{6 a}$ which was selectively protected as its $\mathrm{C}_{3}, \mathrm{C}_{5}$ acetonide $\mathbf{4 7}$ in $78 \%$ yield. Subjection of $\mathbf{4 7}$ to standard silylation conditions (TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ ) gave only monosilylation. Bis-TBS protection of 47 required forcing conditions (8 equiv of reagent, minimum use of solvent and extended reaction times at room temperature), implying that there was a considerable degree of steric crowding in the product 48, but could be achieved in $69 \%$ yield. Ozonolysis of $\mathbf{4 8}$ then provided the macrolide 45 ( $84 \%$ yield) in readiness for the olefination model studies.

Subjection of ketone $\mathbf{4 5}$ to a range of nucleophilic reagents $\left(\mathrm{Zn} / \mathrm{CH}_{2} \mathrm{I}_{2} / \mathrm{TiCl}_{4}{ }^{43} \mathrm{Cp}_{2} \mathrm{TiCH}_{2} \mathrm{ClAlMe}_{2}{ }^{44} \mathrm{TMSCH}_{2}{\mathrm{Li} / \mathrm{CeCl}_{3},{ }^{45}}^{45}\right.$ $\mathrm{Me}_{2} \mathrm{~S}=\mathrm{CH}_{2},{ }^{46} \mathrm{Me}_{2} \mathrm{~S}(\mathrm{O})=\mathrm{CH}_{2},{ }^{46} \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ at $\leq 70{ }^{\circ} \mathrm{C}$,

[^9]Scheme $11^{a}{ }^{a}$



III
51


III
52
${ }^{a}$ (a) $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1: 1: 1\right.$ by volume), $20^{\circ} \mathrm{C}, 84 \mathrm{~h}$; (c) $\mathrm{O}_{3}, \mathrm{EtOAc},-78{ }^{\circ} \mathrm{C}, 90 \mathrm{~min}$; $\mathrm{Me}_{2} \mathrm{~S}, 20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (d) $\mathrm{Ph}_{3} \mathrm{MeP}^{+} \mathrm{Br}^{-}, \mathrm{KHMDS}, \mathrm{PhMe}, 90^{\circ} \mathrm{C}, 8 \mathrm{~h}$.
$\mathrm{NaBH}_{4}, \mathrm{MeLi}$, and MeMgCl$)$, however, led only to reisolation of starting material. It thus appeared that the $\mathrm{C}_{8}$ carbonyl group of macrolide $\mathbf{4 5}$, as in the $9 S$ macrolide 42, was simply too sterically hindered to react with nucleophiles. However, upon heating to a high enough temperature ( $\geq 80^{\circ} \mathrm{C}$ ), macrolide $\mathbf{4 5}$ did react with the ylide generated from methyltriphenylphosphonium bromide by treatment with potassium hexamethydisilazide (KHMDS), to afford a product having the required $\mathrm{C}_{8}$ exo-methylene group. Unfortunately, this product also possessed another double bond and contained only one TBS group. It was apparent that there had been an elimination of TBSOH across $\mathrm{C}_{11}-\mathrm{C}_{12}$ during the course of the reaction, and the product was accordingly identified as macrolide $49 .{ }^{47}$ In no case was the product of $\mathrm{C}_{8}$ methylenation before $\mathrm{C}_{11}-\mathrm{C}_{12}$ elimination (i.e., the desired 48) ever observed. Reaction at lower temperatures $\left(\leq 70^{\circ} \mathrm{C}\right)$ led only to recovery of starting material and no product formation.

It was thus hypothesized that although the $\mathrm{C}_{8}$ carbonyl group of macrolide 45 was too sterically hindered to react with

[^10]nucleophiles (especially bulky phosphorus ylides), when $\mathbf{4 5}$ was heated to a high enough temperature ( $>80{ }^{\circ} \mathrm{C}$ ) under the conditions of the Wittig reaction, elimination of TBSOH across $\mathrm{C}_{11}-\mathrm{C}_{12}$ occurred to give alkene 50 , the conformation of which was sufficiently different to allow access of nucleophiles to the $\mathrm{C}_{8}$ carbonyl group. At $80^{\circ} \mathrm{C}$ the Wittig olefination of $\mathbf{5 0}$ was thus facile and occurred immediately to give the isolated product 49. This hypothesis was supported by computer modeling using MacroModel. ${ }^{42}$ The lowest energy conformation calculated for 51 (in which the TBS groups of $\mathbf{4 5}$ have been replaced by TMS groups to simplify the computation) is shown in Scheme 11.48 Attack on the si face of the ketone is obstructed by the macrocyclic ring structure, while the ketone is shielded from re-face attack (dashed arrow) by the $\mathrm{C}_{9}$ OTMS group, which is locked in position by the $\mathrm{C}_{11}$ OTMS group. In the real system (i.e., 45), the sterically more-demanding OTBS group would be expected to have an even greater blocking effect. In contrast, in the lowest energy conformer calculated for 52, the product of $\mathrm{C}_{11}-\mathrm{C}_{12}$ elimination from $\mathbf{5 1}$, the $\mathrm{C}_{8}$ ketone is now exposed to attack on its $r e$ face (solid arrow) as the silyl ether at $\mathrm{C}_{9}$ can rotate out of the way, thus explaining why $\mathbf{5 0}$ undergoes methylenation with phosphorus ylide reagents.

At this stage of the research it was apparent that although a short and highly stereoselective synthesis of the ( $9 S$ )-macrolide 42 had been developed ( $5 \%$ yield over 14 steps from ketone (S) $\mathbf{- 8}$ with $62 \%$ overall ds), the elaboration of this intermediate to complete a synthesis of oleandolide was likely to be problematical due to the difficulties encountered in introducing further functionality at the sterically encumbered $\mathrm{C}_{8}$ position. For similar reasons, it appeared that if a macrolide having $9 R$ configuration was to be synthesized de novo, the TBS group (as in $\mathbf{4 5}$ ) was an unacceptable choice of protecting group for the $\mathrm{C}_{9}$ (and $\mathrm{C}_{11}$ ) hydroxyls. In addition, the loss of material during the coupling and/or desulfoxidation steps in the synthesis of macrolide 42, due to migration of the TBS protecting group

[^11]
## Scheme $\mathbf{1 2}^{\text {a }}$


${ }^{a}$ (a) $(\mathrm{Chx})_{2} \mathrm{BCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$; $(\mathrm{E})-\mathrm{MeCH}=\mathrm{CHCHO}, 0$ ${ }^{\circ} \mathrm{C}, 16 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH} / \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
from $\mathrm{C}_{9}$ to $\mathrm{C}_{8}$, was undesirable. In an attempt to achieve a more efficient synthesis, we therefore elected to employ a cyclic group to protect the $C_{9}$ and $C_{11}$ hydroxyls, since this should eliminate the problem of protecting group migration. Such a choice of protecting group necessitated the synthesis of a macrolide having $R$ configuration at $\mathrm{C}_{9}$. An additional requirement was that the protecting group used should not significantly hinder nucleophilic attack at $\mathrm{C}_{8}$ of the macrolide. Computer modeling studies (vide infra) indicated that acetal protecting groups should satisfy such criteria; accordingly, the synthesis of a macrolide so-protected was now attempted.

Synthesis of a Macrolide with $9 R$ Configuration. SubstrateControlled Anti-Selective Aldol Reaction of Ethyl Ketone (S).8. Inspection of the retrosynthesis for oleandolide (Scheme 1) reveals that access to a macrolide (3) having $9 R$ configuration requires the stereoselective synthesis of the anti aldol adduct 7 $(A A)$. This in turn requires the selective generation of the $(E)$ enol borinate of ketone $(S)-8$, and control over the $\pi$-face diastereoselectivity of its aldol addition to crotonaldehyde.

Brown has described the use of the achiral reagent dicyclohexylboron chloride ( $\left.(\mathrm{Chx})_{2} \mathrm{BCl}\right)$ for the selective $E$ enolization of diethylketone. ${ }^{49}$ Optimum selectivity is obtained by using the less-hindered base triethylamine (rather than the sterically more-demanding ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ ), and by employing ether as the solvent. The boron chloride reagent is readily available via hydroboration of cyclohexene with monochloroborane. ${ }^{4 \mathrm{~b}}$ We were gratified to discover that, on applying Brown's enolization protocol to ethyl ketone ( $S$ )-8 (at a temperature of $-78^{\circ} \mathrm{C}$ ), followed by addition of crotonaldehyde and buffered oxidative $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ workup, essentially a single aldol isomer was produced, in excellent yield (Scheme 12). ${ }^{10 \mathrm{~d}}$ The diastereoselectivity of this extraordinary reaction was judged by HPLC and 400 MHz ${ }^{1} \mathrm{H}$ NMR analysis to be at least $97 \% .{ }^{50}$ The major aldol adduct was determined to be $7(A A),{ }^{51}$ the isomer required for oleandolide synthesis.

In the analogous syn aldol reaction of ( $S$ )-8 mediated by the achiral reagent ${ }^{n} \mathrm{Bu}_{2} \mathrm{BOTf}$, with ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ as base, the corresponding $S A: S S$ ratio was close to unity (vide supra). Thus, whereas a (Z)-enol borinate of ketone (S)-8 possessing achiral ligands displays negligible $\pi$-face selectivity, the corresponding ( $E$ )-
(49) (a) Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441; (b) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 499; (c) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 2716. (d) Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem. 1992, 57, 3767. (e) Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem. 1993, 58, 147. (f) Ganesan, K.; Brown, H. C. J. Org. Chem. 1993, 58, 7162.
(50) Some selectivity in anti aldol product formation had already been noted for the ${ }^{n} \mathrm{Bu}_{2} \mathrm{BOTf}^{2} / \mathrm{Et}_{3} \mathrm{~N}$-mediated aldol reaction of ketone ( S )-8 (anti: syn $=94: 6, A A: A S=88: 12$; see ref 10 c ). The greater $\pi$-face selectivity obtained with (Chx) $)_{2} \mathrm{BCl}$ is consistent with the greater steric bulk of the cyclohexyl ligand compared to $n$-butyl.
(51) The configuration of the major aldol adduct ( $7(A A)$ ) was deduced by synthesis of aldehyde iv and chemical correlation with material synthesized independently from the known aldol adduct 7 (SA) (see supplementary material and ref 10 d ).

enol borinate displays marked $\pi$-face selectivity in its reaction with achiral aldehydes. In the $(\mathrm{Chx})_{2} \mathrm{BCl}$-mediated aldol reaction of ethyl ketone ( $S$ )-8 there is thus a substantial degree of substrate control of asymmetric induction.

The remarkably high level of diastereoselectivity operating in the $(\mathrm{Chx})_{2} \mathrm{BCl}$-mediated aldol reaction of ketone $(S)-8$ can be traced to the relative steric and electronic properties of the three substituents- $\mathrm{H}, \mathrm{Me}$, and $\mathrm{CH}_{2} \mathrm{OBn}$-at the $\alpha$ stereogenic center of the $(E)$-enol borinate 53. Computational transition state modeling of the reaction has identified 54 as the lowest energy TS conformer. ${ }^{52}$ This chairlike structure minimizes the $\mathrm{A}(1,3)$ allylic strain ${ }^{53}$ with the ( $E$ )-enol methyl substituent, and has the methyl group pointing outward and the (benzyloxy)methyl substituent directed in toward the aidehyde. The apparent contrasteric preference for TS 54 ( $r e$-face attack) over TS 55 (si-face attack) is considered to have an electronic origin. ${ }^{10 f, 52,54,55}$ It is conceivable that TS 55 is destabilized by lone-pair repulsion ${ }^{56}$ between the oxygen atoms.


54
re-face attack FAVOURED


55
si-face attack

A model to account for the considerable difference in enolization selectivity of the ( Ipc$)_{2} \mathrm{BOTf} / \mathrm{Pr}_{2} \mathrm{NEt}$ system $(\rightarrow(Z)$ enol borinate 12) compared to the $(\mathrm{Chx})_{2} \mathrm{BCl} / \mathrm{Et}_{3} \mathrm{~N}$ system ( $\rightarrow$ $(E)$-enol borinate 53) has recently been proposed. ${ }^{57}$

Synthesis of the (9R)-C8 $-\mathrm{C}_{13}$ Fragment. Having synthesized the anti aldol adduct 7 (AA), the next transformation required in the route to the $(9 R)-\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment of oleandolide was introduction of the $\mathrm{C}_{11}$ stereocenter. In view of the inverted configuration at $\mathrm{C}_{9}$ (i.e., $9 R$ rather than $9 S$ ), a directed ketone reduction of 7 (AA) giving the $\mathrm{C}_{9}, \mathrm{C}_{11}$ anti-diol was now required. This was accomplished in $92 \%$ yield and with $\geq 97 \%$ ds (single diastereomer by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR ${ }^{58}$ by employing the tetramethylammonium triacetoxyborohydride reducing agent introduced by Evans (Scheme 13). ${ }^{59}$

[^12]A dramatic erosion of $\pi$-face selectivity in aldol addition to methacrolein was observed, giving 72:28 (si:re or re:si) for $\mathbf{v}$ compared to 98:2 (si:re) for ( $R$ )-8 itself. See: Paterson, I.; Tillyer, R. D. J. Org. Chem. 1993, 58, 4182.
(55) For contrasting stereoselectivities in the anti aldol reactions of some other chiral ethyl ketones, see ref 46 and (a) Paterson, I.; Hulme, A. N.; Wallace, D. J. Tetrahedron Lett. 1991, 32, 7601. (b) Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127.
(56) Lone-pair repulsion has been invoked by Roush to rationalize the asymmetric induction occurring in tartrate-mediated allylboration reactions. Roush, W. R.; Banfi, L. J. Am. Chem. Soc. 1988, 110, 3979.
(57) (a) Goodman, J. M. Tetrahedron Lett. 1992, 33, 7219. (b) Goodman, J. M.; Paterson, I. Tetrahedron Lett. 1992, 33, 7213.

## Scheme $13^{a}$


${ }^{a}$ (a) $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{AcOH} / \mathrm{MeCN},-20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (b) ( MeO$)_{2} \mathrm{CHMe}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, catalytic $p$-TsOH, $20^{\circ} \mathrm{C}, 70 \mathrm{~h}$; (c) $\mathrm{LiDBB}, \mathrm{THF},-78^{\circ} \mathrm{C}, 1$ h ; (d) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{Et}_{3} \mathrm{~N},-23^{\circ} \mathrm{C}, 30 \mathrm{~min}$; aqueous $\mathrm{NH}_{4} \mathrm{Cl}$; (e) $\mathrm{MeMgCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-100^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) PMBCl , $\mathrm{KH}, \mathrm{THF}, 0 \rightarrow 20^{\circ} \mathrm{C}, 90 \mathrm{~min} ;(\mathrm{g}) \mathrm{OsO}_{4}, \mathrm{NMO},{ }^{\circ} \mathrm{BuOH} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 20$ ${ }^{\circ} \mathrm{C}, 15 \mathrm{~h} ; \mathrm{NaIO}_{4}, \mathrm{pH} 7$ buffer, $20^{\circ} \mathrm{C}, 25 \mathrm{~min}$.

On the basis of our molecular modeling studies (vide infra) we elected to protect the $\mathrm{C}_{9}, \mathrm{C}_{11}$ anti-diol as its ethylidene acetal. However, the use of such an acetal introduces an additional stereogenic center. Note that the macrolide modeling studies suggested that only one acetal configuration would permit the correspondingly protected seco-acid to undergo macrolactonization. ${ }^{60}$ The required acetal stereochemistry was that of 56 (Scheme 13). Molecular modeling using MM2 ${ }^{42}$ predicted that the desired acetal 56 should, however, be thermodynamically preferred over its epimer 57 by $>99: 1$. Accordingly, thermo-


57
dynamically controlled acetalization of the $\mathrm{C}_{9}, \mathrm{C}_{11}$ anti-diol with acetaldehyde dimethyl acetal using $p$-toluenesulfonic acid as catalyst gave, after 24 h , the desired 56 as a single isomer in $86 \%$ yield over the two steps from $7(A A)$. Shorter reaction times ( $<24 \mathrm{~h}$ ) or weaker acids (pyridinium $p$-toluenesulfonate) led to a mixture of 56 and 57 . The stereochemistry of $\mathbf{5 6}$ was confirmed by NOE experiments, in which irradiation of the acetal hydrogen led to enhancement of the olefinic (8.5\%) and $\mathrm{C}_{11}$ hydrogen ( $11.6 \%$ ) resonances.

Acetal 56 was elaborated to a ( $9 R$ )- $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment suitable for coupling by a sequence of reactions analogous to that used earlier in the $9 S$ route. Thus, cleavage of the $\mathrm{C}_{13}$ benzyl ether of 56 was achieved in $97 \%$ yield by use of the LiDBB radical anion reagent ${ }^{28}$ in THF at $-78^{\circ} \mathrm{C}$. Swern oxidation ${ }^{29}$ (warming only to $-23^{\circ} \mathrm{C}$ after addition of triethylamine, as before, in order to prevent elimination of the $\beta$-alkoxy substituent) then gave the $\mathrm{C}_{13}$ aldehyde 58 in $87 \%$ yield. Stereoselective introduction of a methyl substituent at $\mathrm{C}_{13}$ of 58 was expected to be achieved by addition of a methyl Grignard reagent at low

[^13]temperature. As in the $9 S$ route, the product of Felkin-Cram addition ${ }^{30,31}$ was required, but the use of the ethylidene protecting group provided the possibility of chelation control. ${ }^{33}$ In the event, addition of MeMgCl to a solution of aldehyde 58 in dichloromethane at $-100^{\circ} \mathrm{C}$ gave $93 \%$ diastereoselectivity in favor of the desired ( $13 R$ )-alcohol $59,{ }^{61}$ and a yield of $89 \%$; the minor epimer could now be removed by flash chromatography on silica gel. Grignard addition in either THF or ether gave similar levels of diastereoselectivity, but lower yields. After protection of alcohol 59 as its $p$-methoxybenzyl (PMB) ether, oxidative cleavage of the double bond (dihydroxylation using osmium tetroxide, followed by in situ ${ }^{62}$ cleavage by sodium periodate ${ }^{63,64}$ ) then gave the ( $9 R$ ) - $\mathrm{C}_{8}-\mathrm{C}_{13}$ aldehyde $\mathbf{6 0}$ in $88 \%$ yield over the two steps.
The ( $9 R$ ) $-\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment had been prepared in an overall yield of $48 \%$ over the eight steps from ethyl ketone ( $S$ )-8 and with $90 \%$ ds (cf. $30 \%$ yield and $76 \%$ ds for the earlier $9 S$ fragment). The improved efficiency of the latest route was a direct consequence of the remarkably high diastereoselectivity ( $97 \%$ ) achieved in the substrate-controlled (Chx) $)_{2} \mathrm{BCl}$-mediated anti aldol reaction of ( $S$ )-8, together with the high diastereoselectivity (93\%) obtained in Grignard addition to aldehyde 58.

Substrate-Controlled Syn-Selective Aldol Reaction of Ethyl Ketone ( $\boldsymbol{S}$ )-8. Encouraged by the success of the substratecontrolled anti aldol reaction providing 7 (AA), we decided to investigate whether substrate control might also be used to afford improved diastereoselectivity in the syn aldol reaction generating 6 (SS) for the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment, which had previously been performed under reagent control (vide supra).

The ( $Z$ )-enol di- $n$-butylborinate of ketone ( $(S)-8$, which reacts through a nonchelated chair transition state, had already been shown to display insignificant $\pi$-face selectivity in its aldol addition to methacrolein ( $S S: S A=54: 46$ ). It was conceivable that asymmetric induction from the $\alpha$ stereogenic center of ketone $(S)-8$ might be magnified by reaction through a conformationally restricted enolate. Such an enolate might be obtained by the use of a Lewis acidic metal capable of internally chelating the benzyl ether oxygen. Following the report by Evans of a procedure for the direct formation of chlorotitanium ( $Z$ )-enolates ( $\mathrm{TiCl}_{4},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ ), ${ }^{65}$ the titanium-mediated aldol addition of ketone ( $S$ ). $\mathbf{8}$ to methacrolein was examined. An excellent yield of the syn aldol adducts was obtained ( $93 \%$, syn:anti $\geq 98: 2$ ), but the observed $\pi$-face stereoselectivity for this reaction, although higher than in the dibutylboron-mediated case, was still low ( $S S: S A=62: 38$ ), implying that the reaction was not proceeding through a chelated transition state.
Mukaiyama ${ }^{66 a}$ has introduced tin(II) enolates ${ }^{66}$ for the synselective aldol reactions of simple ketones. When ketone ( $S$ )-8 was enolized under modified Mukaiyama conditions ( $\mathrm{Sn}(\mathrm{OTf})_{2}$, $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 2 h ), followed by addition of methacrolein, an excellent yield (90\%) of aldol adducts was obtained (Scheme 14). ${ }^{67}$ A high level of syn diastereoselectivity

[^14]Scheme $14^{a}$

${ }^{\text {a }}$ (a) $\mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CHO},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
was observed for the reaction (syn:anti $\geq 99: 1$ ), consistent with selective formation of the $\operatorname{tin}($ II $)(Z)$-enolate $61{ }^{68}$ and addition to the aldehyde via a chair transition state. Moreover, the required isomer $6(S S)$ was formed with a selectivity ( $S S: S A=$ 93:7) superior to that previously achieved using the chiral boron triflate reagent $(+)$-(Ipc) $)_{2}$ BOTf. ${ }^{10 c}$ The tin-mediated aldol reaction has the additional advantage, compared to its boron analogue, that an oxidative workup is not required.

The sense of $\pi$-face diastereoselectivity obtained from the $\operatorname{tin}(\mathrm{II})$ enolate 61 may be rationalized by reaction occurring preferentially through the internally chelated chair transition state 62 (re-face attack), in which the small (i.e., hydrogen) substituent on the $\alpha$ stereogenic center of the enolate is orientated toward the center, rather than the more sterically congested transition state 63 (si-face attack), in which the methyl substituent is pointing in toward the aldehyde.


The substrate-controlled, $\mathrm{Sn}(\mathrm{OTf})_{2}$-mediated, aldol reaction of ketone ( $S$ )-8 has been successfully extended to include a range of both prochiral and chiral $\alpha$-branched aldehydes. ${ }^{67}$ The latter substrates, in particular, gave poor yields and stereoselectivities in our previous (Ipc) $)_{2}$ BOTf-mediated, reagent-controlled procedure. ${ }^{10 e}$

Synthesis of a Modified $\mathbf{C}_{1}-\mathbf{C}_{7}$ Fragment. In order to achieve a fragment coupling reaction of minimum complexity, and hence maximum reliability, we decided that the $\mathrm{C}_{1}$ hydroxyl in the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment 33 should remain protected as its benzyl ether. This option required selective cleavage of the $\mathrm{C}_{1}$ benzyl ether after coupling, which was now possible (vide infra) because of the choice of a $p$-methoxybenzyl ether, rather than a (benzyloxy)methyl ether, as the protecting group for the $\mathrm{C}_{13}$ hydroxyl of the ( $9 R$ )- $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragment 60 . Accordingly, the tosylate 34, derived from $6(S S)$ as previously, was subjected directly to the thiophenolate displacement reaction (Scheme 15). The resulting sulfide was then oxidized to provide the modified $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment 64 in $97 \%$ yield over the two steps from 34, and in an overall yield of $54 \%$ and with $84 \%$ ds in six steps from the ethyl ketone $(S)-8$. The increased efficiency with which a $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment was now obtained was due principally to the development of the substrate-controlled aldol reaction for 6 (SS).

[^15]Scheme $15^{a}$

${ }^{a}$ (a) $\mathrm{PhSLi}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) $\mathrm{NaIO}_{4}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 21 \mathrm{~h}$.
Scheme $\mathbf{1 6}^{a}$

${ }^{a}$ (a) $\mathrm{LiNEt}_{2}$ ( 1.7 equiv), THF, $-20^{\circ} \mathrm{C}, 15 \mathrm{~min} ; 60,-78 \rightarrow-20$ ${ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) W-2 Raney $\mathrm{Ni}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) W-2 Raney Ni, $\mathrm{H}_{2}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (d) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; $\mathrm{Et}_{3} \mathrm{~N},-23^{\circ} \mathrm{C}, 30 \mathrm{~min}$; aqueous $\mathrm{NH}_{4} \mathrm{Cl}$; (e) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4},{ }^{\circ} \mathrm{BuOH} /$ $\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (f) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (g) $2,4,6-$ $\mathrm{Cl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{COCl}, \mathrm{Et} \mathrm{E}_{3} \mathrm{~N}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; add to DMAP, PhMe, $60^{\circ} \mathrm{C}$, 3 h .

Fragment Coupling. Optimized conditions for the coupling of the $\mathrm{C}_{1}-\mathrm{C}_{7}$ and $\mathrm{C}_{8}-\mathrm{C}_{13}$ fragments involved $\alpha$-lithiation of the sulfoxides $64{ }^{69}$ with the less-hindered base lithium diethylamide ( 1.05 equiv), rather than LDA, in THF at $-20^{\circ} \mathrm{C}$, followed by addition of aldehyde 60 ( 0.63 equiv) at $-78{ }^{\circ} \mathrm{C}$ and subsequent warming to $-20^{\circ} \mathrm{C}$ (Scheme 16). Desulfoxidation of the resulting mixture of adducts $\mathbf{6 5}$ was accomplished, after chromatographic separation of the excess sulfoxides 64, by using W-2 Raney nickel in diethyl ether. This was followed by selective ${ }^{70}$ hydrogenolysis of the $\mathrm{C}_{1}$ benzyl ether using W-2 Raney nickel in ethanol, ${ }^{71}$ to give the two epimeric diols 66 in $60 \%$ yield over the three steps from aldehyde 60 . Swern oxidation ${ }^{29}$ of 66 to the ketoaldehyde and immediate further oxidation with sodium chlorite provided the acid 67 in $96 \%$ overall yield. Hydrogenolysis of the $\mathrm{C}_{13} p$-methoxybenzyl ether then gave the seco-acid 68 in $97 \%$ yield in readiness for macrolactonization.

[^16]
## Scheme $\mathbf{1 7}^{a}$



| Macrolactonisation |
| :---: |
| Yields: |
| $68 \rightarrow$ 69: |
| $78 \%$ |
| $71 \rightarrow 72: \quad 0 \%$ |



III
69
$+86.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
thermodynamically preferred acetal epimer
${ }^{a}$ (a) $2,4,6-\mathrm{Cl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; add to DMAP, $\mathrm{PhMe}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
Scheme $18^{a}$

Macrolactonisation
Yields:
9 9S: $\mathbf{4 0} \rightarrow \mathbf{4 2 :} 60 \%$
$9 R: 73 \rightarrow 45: \quad 0 \%$


IIII
44
$+137.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
thermodynamically preferred epimer


III
51
$+145.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
${ }^{a}$ (a) $2,4,6-\mathrm{Cl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; add to DMAP, $\mathrm{PhMe}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Macrolactonization and Modeling Studies. Cyclization of 68 to the macrolide 69 was achieved in good yield ( $78 \%$ ) using Yamaguchi's procedure ( $\left.2,4,6-\mathrm{Cl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{COCl}, \mathrm{DMAP}\right) .{ }^{40}$ Crucial to the success of this reaction is the use of the ethylidene protecting group with the correct acetal stereochemistry. Molecular modeling ${ }^{42}$ indicated that macrolide 69 was thermodynamically preferred by $24.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over its ethylidene acetal epimer 70, in which there is an unfavorable steric interaction of the acetal methyl group and the macrocycle (Scheme 17). A similar interaction presumably accounts for the observed failure of the seco-acid 71 with acetonide protection at $\mathrm{C}_{9}-\mathrm{C}_{11}$ to cyclize ( $\rightarrow$ macrolide 72) under the Yamaguchi conditions. ${ }^{60,72}$

The seco-acid $73^{72}$ with tert-butyldimethylsilyl ether protection at $C_{9}$ and $C_{11}$ also failed to cyclize under the Yamaguchi conditions (Scheme 18). This is in marked contrast to the behavior of its $\mathrm{C}_{9}$ epimer, seco-acid $\mathbf{4 0}$, which was successfully cyclized in $60 \%$ yield (vide supra) ${ }^{73}$ Molecular modeling ${ }^{42}$ of

[^17]the corresponding macrolides $\mathbf{4 4}$ and $\mathbf{5 1}$ (wherein the TBS groups were replaced by TMS groups in order to simplify the computation) revealed that the $9 S$ epimer $\mathbf{4 4}$ is thermodynamically preferred by $7.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over the $9 R$ epimer 51 , in which the silyl groups at $\mathrm{C}_{9}$ and $\mathrm{C}_{11}$ are necessarily closer and as a consequence suffer the greatest steric interaction. Thus, it appears that a sterically demanding protecting group at $\mathrm{C}_{9}$ and $\mathrm{C}_{11}$ (e.g., TBS) is advantageous in the seco-acid of $9 S$ configuration, but undesirable in the seco-acid of $9 R$ configuration.

Completing a Synthesis of Oleandolide. Epoxidation of $\mathrm{C}_{8}$ Alkene. The elaboration of macrolide 69 to oleandolide requires stereoselective introduction of an exocyclic epoxide at $\mathrm{C}_{8}$. Initially, we examined accomplishing such a transformation via the exocyclic alkene. Accordingly macrolide 74 was prepared, in $92 \%$ yield, by a straightforward Wittig methylena-

[^18]

Figure 1.

Scheme $19^{a}$

${ }^{a}$ (a) $\mathrm{Ph}_{3} \mathrm{MeP}^{+} \mathrm{Br}^{-}, \mathrm{KHMDS}, \mathrm{PhMe}, 60-90^{\circ} \mathrm{C}, 1-16 \mathrm{~h}$.
Table 1

|  |  | $0_{\prime^{\prime \prime \prime}}^{+}$ |  |
| :---: | :---: | :---: | :---: |
| reagent | solvent | 80:8-epi-80 ${ }^{\text {a }}$ | yield ${ }^{\text {b }}$ \% |
| $m$-CPBA | $\mathrm{CCl}_{4}$ | 50:50 | 82 |
| $m$-CPBA | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 50:50 | 73 |
| $m$-CPBA | PhMe | 64:36 | 80 |
| $m$-CPBA | $\mathrm{Et}_{2} \mathrm{O}$ | 33:66 | 65 |
| $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H} / \mathrm{NaHCO}_{3}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 5:95 | 50 |
| dimethyldioxirane | $\mathrm{Me}_{2} \mathrm{CO}$ | 0:100 | 70 |
| $\mathrm{PhCN} / \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{KHCO}_{3}$ | MeOH | 0:100 | 60 |

${ }^{a}$ Ratio determined by ${ }^{1}$ H NMR. ${ }^{b}$ Isolated yield after chromatography.
tion of macrolide 69 using methyltriphenylphosphonium bromide and potassium hexamethyldisilazide in THF at $60^{\circ} \mathrm{C}$ (Scheme 19). The $\mathrm{C}_{9}, \mathrm{C}_{11}$ benzylidene and $\mathrm{C}_{9}, \mathrm{C}_{11}$ methylene acetal-protected macrolides $\mathbf{7 5}$ and $\mathbf{7 6}^{74}$ similarly underwent ready methylenation ( $\rightarrow 77$ and 78, respectively) under these reaction conditions. This is in marked contrast to the macrolides 42 and 45 which were inert under the same reaction conditions (vide supra). Molecular modeling ${ }^{42}$ of the macrolides 69, 75, and 76 suggested that although the si face of the $\mathrm{C}_{8}$ ketone was blocked by the macrocycle, the re face was readily accessible to attack by nucleophilic reagents (Figure 1). Thus, the employ-

[^19]Scheme $\mathbf{2 0}^{a}$

${ }^{a}$ (a) $\mathrm{Ph}_{3} \mathrm{MeP}^{+} \mathrm{Br}^{-}, \mathrm{KHMDS}, \mathrm{PhMe}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $2 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, THF, $50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (c) $p-\mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{CSA}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 45$ $\min$; (d) $m$-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (e) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 15$ $\mathrm{min} ; \mathrm{Ph}_{3} \mathrm{P},-78 \rightarrow+20^{\circ} \mathrm{C}, 15 \mathrm{~min}$.
ment of an acetal protecting group, rather than a tert-butyldimethylsilyl ether, at $C_{9}$ and $C_{11}$ not only permitted high yielding macrolactonization in the $9 R$ series, but also enabled subsequent nucleophilic addition at $\mathrm{C}_{8}$ of the macrocycle.

Alkene 74 was converted, by means of initial acetal deprotection at $\mathrm{C}_{3}, \mathrm{C}_{5}$ and $\mathrm{C}_{9}, \mathrm{C}_{11}$ and subsequent selective reprotection as the $\mathrm{C}_{3}, \mathrm{C}_{5} p$-bromobenzylidene acetal, to the known ${ }^{6 \mathrm{a}}$ alkene 79 (84\% yield over the two steps, Scheme 20). At this stage, since 79 had already been converted by Tatsuta et al. to oleandomycin, ${ }^{\text {a }}$ this completed a formal synthesis of the natural product. Stereoselective epoxidation of $\mathbf{7 9}$ using $m$-chloroperbenzoic acid ( $m$-CPBA) in $\mathrm{CCl}_{4}$, directed by the $\mathrm{C}_{9}$ hydroxyl, was reported to provide exclusively the required exocyclic $(8 R)$ epoxide 80. ${ }^{6 \mathrm{a}}$ Upon detailed examination of this reaction, however (Table 1), we identified the presence of the epimeric (8S)-epoxide 8-epi-80. In $\mathrm{CCl}_{4}$, a $1: 1$ mixture of $\mathbf{8 0}$ and 8-epi80 was produced. Up to $64 \%$ diastereoselectivity in favor of 80 could be obtained, by performing the reaction in toluene; in ether, the selectivity of the reaction was turned over, with 8 -epi80 now being obtained with modest ( $66 \%$ ) diastereoselectivity. In light of our modeling studies (vide supra), the lack of stereoselectivity obtained on epoxidation of 79 is not surprising.

Scheme $21^{a}$

${ }^{a}$ (a) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (b) ${ }^{\text {' } \mathrm{BuOOH},{ }^{n} \mathrm{BuLi}, \mathrm{THF},-78 \rightarrow}$ $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) ${ }^{\mathrm{C}} \mathrm{BuOOH}, \mathrm{KH}, \mathrm{THF},-78 \rightarrow 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Alkene 79 should be conformationally very similar to the modeled ketone 69, and so epoxide 8 -epi-80 is the epimer expected to be favored by macrocyclic stereocontrol (re-face attack), whereas 80 requires direction of the reagent onto the more hindered si face of the $\mathrm{C}_{8}$ alkene. The use of a noncoordinating solvent (such as toluene) thus favors formation of the hydroxyl-directed product; employing a coordinating solvent (ether) favors formation of the product of macrocyclic stereocontrol. The use of other epoxidizing agents $\left(\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H} /\right.$ $\mathrm{NaHCO}{ }_{3}$, dimethyldioxirane, or $\mathrm{PhCN} / \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{KHCO}_{3}{ }^{75}$ ) in place of $m$-CPBA led to near-exclusive formation of the undesired epimer 8-epi-80.

Further evidence for the participation of macrocyclic stereocontrol, in the sense predicted by the modeling studies, was provided by epoxidation of the $\mathrm{C}_{9}$-protected macrolide 74. In this case hydroxyl-directed epoxidation is not possible, and when using $m$-CPBA only 81, the product of re-face attack, was isolated, in $60 \%$ yield (Scheme 20). ${ }^{76}$ We were intrigued to discover at this point that ozonolysis of alkene $\mathbf{7 4}$ besides providing the expected ketone 69 also afforded an equal amount of the epoxide 81, which presumably arose from an alternative breakdown of the initial molozonide through loss of bimolecular oxygen.

In an attempt to obtain the required epoxide stereochemistry with greater diastereoselectivity, the enone $\mathbf{8 2}$ was prepared by selective allylic oxidation of macrolide 79 using manganese(IV) oxide (Scheme 21). However, all attempts to epoxidize 82 using tert-butyl hydroperoxide under standard conditions proved unsuccessful, and this strategy was abandoned.

Introduction of the Epoxide via the $\mathrm{C}_{8}$ Ketone. The molecular modeling studies had predicted that good levels of $r e$-face selectivity were to be expected in additions to the $\mathrm{C}_{8}$ ketone of macrolide 69, since the si face of the ketone was blocked by the macrocycle. Attack of a sulfur ylide, therefore, should occur preferentially in the sense providing the ( $8 R$ )epoxide 83 required for oleandolide. In the event, reaction of 69 with dimethylsulfonium methylide ${ }^{46}$ gave exclusively (single diastereoisomer by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) the desired epoxide $\mathbf{8 3}$ in $83 \%$ yield (Scheme 22). ${ }^{77}$ Attempts to remove the acetonide and ethylidene protecting groups from 83 under acidic conditions proved difficult, and so the reactive epoxide was temporarily converted to the more robust iodohydrin 84 ( $87 \%$ yield), ${ }^{78}$ a strategy which had been successfully employed in our previous

[^20]degradative studies on oleandomycin. ${ }^{7 e}$ Attempted direct conversion of ketone 69 to the iodohydrin 84 , by iodomethylenation using diiodomethane and samarium(II) iodide, ${ }^{79}$ only resulted in deoxygenation at $\mathrm{C}_{9}$ and formation of $\mathbf{8 5}$ in $79 \%$ yield. Treatment of $\mathbf{8 4}$ with hydrochloric acid in THF gave the labile pentol, which was immediately protected as its $\mathrm{C}_{3}, \mathrm{C}_{5}$ $p$-bromobenzylidene derivative and worked up with sodium hydrogen carbonate to provide 80 in $72 \%$ yield. Selective oxidation at $\mathrm{C}_{9}$ was best accomplished using pyridinium chlorochromate (PCC) on alumina, ${ }^{80}$ which gave the ketone 86 in $78 \%$ yield ( $89 \%$ based on recovered $\mathbf{8 0}$ ). Finally, hydrogenolysis of the $p$-bromobenzylidene acetal gave a $95 \%$ yield of oleandolide (2), $[\alpha]^{20}{ }_{\mathrm{D}}=-14.3^{\circ}\left(c 1.05, \mathrm{CHCl}_{3}\right)\left[c f\right.$. lit. ${ }^{6 \mathrm{a}}$ $\left.[\alpha]^{20}{ }_{D}=-13.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)\right]$, obtained as a mixture of the keto- and 5,9 -hemiacetal forms. This had physical and spectroscopic data identical with those of material derived from oleandomycin. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $2\left(\mathrm{CDCl}_{3}\right.$, $\mathrm{CD}_{3} \mathrm{OD}$ ) matched exactly the spectra of oleandolide kindly provided by Professor Tatsuta. As an additional verification of structure, peracetylation provided the known triacetate 87, $[\alpha]^{20}{ }_{\mathrm{D}}=+39.7^{\circ}\left(c 0.61, \mathrm{CHCl}_{3}\right)\left[c f\right.$. lit. ${ }^{6 \mathrm{a}}[\alpha]^{20}{ }_{\mathrm{D}}=+43.0^{\circ}(c$ $\left.1.0, \mathrm{CHCl}_{3}\right)$ ], which also had spectroscopic data in agreement with authentic spectra.

## Conclusions

In conclusion, a novel and expedient synthesis of oleandolide has been completed ( $8 \%$ overall yield, 20 steps longest linear sequence with $90 \%$ overall ds, 26 steps in total), which is summarized in Scheme 23. Since the two sugar units have been previously introduced onto oleandolide by the Tatsuta group, ${ }^{6 a}$ this work also constitutes a formal total synthesis of oleandomycin itself. Key features of the synthesis include short, highly stereocontrolled syntheses of the coupling fragments 60 and 64 from the same starting ketone ( $S$ )-8, and introduction of the required ( $8 R$ )-epoxide using macrocyclic stereocontrol. In addition, further insight has been gained into the conformational requirements for successful macrolactonization of 13-carbon seco-acids, and the range of protecting groups which can be successfully utilized has been identified. Several new methods for acyclic stereocontrol were developed during the evolution of this work in response to problems encountered by the stereochemical complexity and high level of oxygenation of oleandomycin. Of particular value is the stereocontrolled aldol chemistry of ( $S$ )-1-(benzyloxy)-2-methylpentan-3-one (and its enantiomer), ${ }^{10, d, f-h}$ which should see general use in the concise synthesis of other polypropionate-derived natural products.

## Experimental Section

General Procedures. See supplementary material for details of instrumentation, purification of reagents and solvents, and chromatography. All nonaqueous reactions were performed under an atmosphere of argon using oven-dried apparatus and employing standard techniques for handling air-sensitive materials.

Methyl (S)-3-(Benzyloxy)-2-methylpropanoate (10). To a stirred solution of ( () -( + )-methyl 3-hydroxy-2-methylpropionate ( $\mathbf{( 9 )}$ ) 7.76 mL , 70.0 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added by cannula a solution of benzyl $2,2,2$-trichloroacetimidate ( $14.3 \mathrm{~mL}, 77.0 \mathrm{mmol}$ ) in cyclohexane $(500 \mathrm{~mL})$. Triflic acid ( $2.48 \mathrm{~mL}, 28.0 \mathrm{mmol}$ ) was added dropwise, whereupon a white solid (trichloroacetamide) precipitated. After stirring at room temperature for 16 h , the precipitate was allowed to settle and the supernatant liquor decanted into a separating funnel. The white crystalline residue was washed with hexanes ( $2 \times 50 \mathrm{~mL}$ ), and the

[^21]Scheme $\mathbf{2 2}^{a}$

${ }^{a}$ (a) $\mathrm{SmI}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 2 \mathrm{~min}$; (b) $\mathrm{Me}_{3} \mathrm{~S}^{+} \mathrm{I}^{-}, \mathrm{NaH}, \mathrm{DMSO}, \mathrm{THF}, 0 \rightarrow 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (c) LiI, AcOH, THF, $20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (d) $2 \mathrm{M} \mathrm{HCl}, \mathrm{THF}$, $55^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (e) $p-\mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; aqueous $\mathrm{NaHCO}_{3}, 20^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (f) PCC/alumina, $\mathrm{PhMe}, 2{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (g) $\mathrm{H}_{2}$, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NaHCO}_{3}, \mathrm{EtOAc}, 30 \mathrm{~min} ;(\mathrm{h}) \mathrm{Ac}_{2} \mathrm{O}, \mathrm{py}, \mathrm{DMAP}, 20^{\circ} \mathrm{C}, 40 \mathrm{~h}$.
washings were combined with the supernatant liquor. The combined organic extracts were washed with sodium bicarbonate solution (100 mL ; saturated, aqueous) and then brine ( 100 mL ; saturated), before being dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated in vacuo and the residue, which still contained some trichloroacetamide, rerinsed with hexanes ( $2 \times 150 \mathrm{~mL}$ ) whereupon the remaining trichloroacetamide precipitated. The combined washings, which contained some dibenzyl ether, were then concentrated in vacuo, and the crude product was purified by flash chromatography ( $15 \% \mathrm{EtOAc} /$ hexanes) to yield 11.83 $\mathrm{g}(81 \%)$ of $\mathbf{1 0}$ as a colorless oil: $[\alpha]^{20} \mathrm{D}=+12.1^{\circ}\left(\right.$ c $\left.10.0, \mathrm{CHCl}_{3}\right)$ [cf. lit. ${ }^{16 \mathrm{~b}}[\alpha]^{20} \mathrm{D}=+11.6^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$ ) for $95 \%$ ee material]: TLC ( $15 \%$ EtOAc/hexanes) $R_{f}=0.30$; IR (thin film) $1730(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{Ph}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.3 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2^{-}}$ $\mathrm{OBn}), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,5.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 2.79(1 \mathrm{H}, \mathrm{dqd}$, $\left.J=7.3,7.1,5.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,138.1,128.4,127.6,73.1,71.9$. 51.7, 40.2, 14.0; $\operatorname{HRMS}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ 226.1443, found $226.1450 ; m / z 226\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 209(11,[\mathrm{M}$ $+\mathrm{H}]^{+}$), 108 (4), 91 (3).
(S)-3-(Benzyloxy)- $N$-methoxy- $N, 2$-dimethylpropanamide (11). To a stirred suspension of $\mathrm{N}, \mathrm{O}$-dimethylhydroxylamine hydrochloride ( 3.00 g. 30.8 mmol ) in toluene ( 30 mL ) at $0{ }^{\circ} \mathrm{C}$ was added cautiously by syringe trimethylaluminum ( $15.4 \mathrm{~mL}, 30.8 \mathrm{mmol} ; 2 \mathrm{M}$ solution in toluene). During the addition the reaction flask was vented through a mineral oil bubbler to allow methane gas produced in the reaction to escape. After addition ( 30 min ), the reaction mixture was allowed to warm to room temperature for 15 min , then recooled to $0^{\circ} \mathrm{C}$, and diluted with more toluene ( 40 mL ), followed by addition by cannula of a solution of ester $10(3.20 \mathrm{~g}, 15.4 \mathrm{mmol})$ in toluene ( $50 \mathrm{~mL}+10 \mathrm{~mL}$ washings). The mixture was heated at $70-80^{\circ} \mathrm{C}$ for 2 h and then cannulated into tartaric acid solution ( $100 \mathrm{~mL} ; 1 \mathrm{M}$ aqueous). This mixture was stirred vigorously for 1 h , the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$. The combined organic extracts were washed with brine ( 100 mL ; saturated). dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude product was eluted through a short column of silica gel with diethyl ether and used in the next step without further purification: $[\alpha]^{20} \mathrm{D}=+5.0^{\circ}$ (c 3.9. $\mathrm{CHCl}_{3}$ ): TLC ( $10 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.32$; IR (thin film) $1650(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{~} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $4.55\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.68$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,5.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.23$
$(1 \mathrm{H}$, buried $\mathrm{m}, \mathrm{CHCH} 3), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$. $\left.\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.9,138.4,128.3,127.5$, 127.5, 73.2, 72.6, 61.5, 35.6, 32.1, 14.2: $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 238.1443$, found 238.1448; m/z 238 (100, [M $\left.+\mathrm{H}^{+}\right), 208$ (15), 148 (11), 118 (4), 108 (4), 91 (2).
(S)-1-(Benzyloxy)-2-methylpentan-3-one ((S)-8). To a stirred solution of amide $\mathbf{1 1}$ prepared above (semicrude: $3.65 \mathrm{~g}, 15.4 \mathrm{mmol}$ ) in THF ( 120 mL ) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a THF solution of ethylmagnesium bromide ( $15.4 \mathrm{~mL}, 30.8 \mathrm{mmol} ; 2 \mathrm{M}$ ). The reaction was complete within 1 h and was quenched by cannulation into a vigorously stirred solution of ammonium chloride ( 30 mL ; saturated, aqueous). The layers were separated, and the aqueous phase was extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $5 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided $2.31 \mathrm{~g}(73 \%$ over two steps) of (S)-8 as a colorless oil: $[\alpha]^{20} \mathrm{D}=+25.8^{\circ}\left(\right.$ c $\left.8.2, \mathrm{CHCl}_{3}\right)$; TLC ( $5 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.55$; IR (thin film) 1705 (s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.50(1 \mathrm{H}, \mathrm{d}$, $J=12.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2-}$ $\mathrm{Ph}), 3.62\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right) .3 .45(1 \mathrm{H}, \mathrm{dd}, J$ $=9.0,5.5 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 2.88(1 \mathrm{H}$, dqd, $J=7.9,7.1,5.5 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 2.51\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.8,138.1,128.4,127.6,127.5,73.2,72.4,46.2,35.3,13.6$, 7.5; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$224.1651, found 224.1659; m/z $224\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 207\left(85,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 129 (20), 91 (100), 57 (20). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 75.69 ; \mathrm{H}$, 8.79. Found C, 75.74 , H, 8.89.
(2S,4S,5R,6E)-1-(Benzyloxy)-5-hydroxy-2,4-dimethyl-6-octen-3one $(7(S A))$. To a stirred solution of $(-)$-(Ipc) $)_{2} \mathrm{BOTf}^{10 c}(1.09 \mathrm{~mL}$, $0.65 \mathrm{mmol} ; \sim 0.6 \mathrm{M}$ in hexane) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added dropwise diisopropylethylamine ( $228 \mu \mathrm{~L}, 1.31 \mathrm{mmol}$ ) followed by addition via cannula of a solution of ketone $(S)-8(90 \mathrm{mg}$, 0.44 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $1 \mathrm{~mL}+1 \mathrm{~mL}$ washings). Following 3 h of enolization at room temperature, the reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$ and freshly distilled crotonaldehyde ( $108 \mu \mathrm{~L}, 1.31 \mathrm{mmol}$ ) added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 1 h . before being left in the refrigerator $\left(-4^{\circ} \mathrm{C}\right)$ for 16 h . The reaction mixture was then partitioned between diethyl ether $(3 \times 20 \mathrm{~mL})$ and pH 7 buffer solution ( 20 mL ), and the combined organic extracts were concentrated in vacuo; the residue was resuspended in methanol (4 $\mathrm{mL})$ and pH 7 buffer ( 1 mL ) and cooled to $0^{\circ} \mathrm{C}$. Hydrogen peroxide solution ( $2 \mathrm{~mL} ; 30 \%$ aqueous) was added dropwise and stirring

Scheme 23

1 step
$(83 \%$ yield;
$\geq 97 \%$ ds $)$

continued at room temperature for $1-2 \mathrm{~h}$. The mixture was then poured into distilled water ( 20 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed in turn with sodium bicarbonate solution ( $15 \mathrm{~mL} ; 5 \%$ aqueous) and brine ( 10 mL ; saturated), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford a yellow oil. Flash chromatography ( $10 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) allowed separation of the aldol products from isopinocampheol; HPLC purification ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided 1.0 mg of the anti-syn aldol product 7 (AS), 9.4 mg of the syn-syn aldol product $7(S S)$, and 78.1 mg of the desired syn-anti aldol product 7 (SA), contaminated by a very small amount ( $\sim 2 \%$ ) of the remaining anti-anti aldol product 7 (AA), as colorless oils in a total yield of 73\%. Data for major diastereomer 7 (SA): $[\alpha]^{20}{ }_{D}$ $=+26.2^{\circ}\left(c 5.0, \mathrm{CHCl}_{3}\right) ;$ TLC $\left(10 \%\right.$ diethyl ether $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.39$; HPLC ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{t}=17.5 \mathrm{~min}$; IR (thin film) 3450 (br), 1690 (s), 1600 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36-$ $7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.68\left(1 \mathrm{H}, \mathrm{dqd}, J=15.3,6.3,1.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right)$,
$5.44\left(1 \mathrm{H}, \mathrm{ddq}, J=15.3,6.2,1.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.48,4.46(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.33(1 \mathrm{H}$, ddd, $J=6.2,4.0,1.1 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.43(1 \mathrm{H}$, dd, $J=8.7,5.2 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.08(1 \mathrm{H}$, dqd, $J=8.7,7.1,5.2$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCHCH} 2 \mathrm{OBn}\right), 2.78\left(1 \mathrm{H}, \mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHOH}\right)$, $1.68\left(3 \mathrm{H}, \mathrm{dd}, J=6.3,1.3 \mathrm{~Hz}, H_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.12(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ), $1.04\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 217.5,137.8,130.7,128.3,127.8,127.6,127.5,73.3,72.7,72.2,50.6$, $45.8,17.6,13.4,10.2 ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{3}([\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$) 294.2069, found 294.2069; m/z 294 (11, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$), 259 (100), 224 (18), 207 (30), 108 (60), 91 (11). Data for minor diastereomers ( $2 S, 4 R, 5 S, 6 E$ )-1-(benzyloxy)-5-hydroxy-2,4-dimethyl-6-octen-3-one ( $7(S S)$ ) and ( $2 S, 4 R, 5 R, 6 E$ )-1-(benzyloxy)-5-hydroxy-2,4-dimethyl-6-octen-3-one (7 (AS)): see supplementary material.
(2S,4R,5R)-1-(Benzyloxy)-5-hydroxy-2,4,6-trimethyl-6-hepten-3one $(6(S S))$. To a stirred solution of $(+)-(\mathrm{Ipc})_{2} \mathrm{BOTf}^{10 e}(1.31 \mathrm{~mL}$, $0.78 \mathrm{mmol} ; \sim 0.6 \mathrm{M}$ in hexane) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added dropwise diisopropylethylamine ( $275 \mu \mathrm{~L}, 1.58 \mathrm{mmol}$ ) followed by addition via cannula of a solution of ketone ( S )-8 (109 $\mathrm{mg}, 0.53 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $1 \mathrm{~mL}+1 \mathrm{~mL}$ washings). Following 3 h of enolization at room temperature, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and freshly distilled methacrolein ( $131 \mu \mathrm{~L}, 1.58 \mathrm{mmol}$ ) added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for a further 1 h , before being left in the refrigerator $\left(-4^{\circ} \mathrm{C}\right)$ for 16 h . Oxidative workup $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ as for $7(\mathrm{SA})$ (vide supra), followed by HPLC purification ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ), provided 10.8 mg of the syn-anti aldol product $6(S A)$ and 97.6 mg of the desired syn-syn aldol product $6(S S)$ as colorless oils in a total yield of $74 \%$. Data for major diastereomer 6 (SS): $[\alpha]^{20}{ }_{\mathrm{D}}=+43.6^{\circ}$ (c $2.1, \mathrm{CHCl}_{3}$ ); TLC ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2}-$ $\left.\mathrm{Cl}_{2}\right) R_{f}=0.45 ; \mathrm{HPLC}\left(10 \%\right.$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{t}=13.5 \mathrm{~min}$; IR (thin film) 3480 (br), 1700 (s), $1650(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.10\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.94$ $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.49$ and $4.47(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.63(1 \mathrm{H}, \mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,5.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.22(1 \mathrm{H}$, $\mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{OH}), 3.19\left(1 \mathrm{H}, \mathrm{dqd}, J=8.8,6.9,5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2}-\right.$ $\mathrm{OBn}), 2.88\left(1 \mathrm{H}, \mathrm{qd}, J=7.2,2.4 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHOH}\right), 1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{H}_{3} \mathrm{CC}=\mathrm{C}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7.2 \mathrm{~Hz}, H_{3} \mathrm{CCHCHOH}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 218.1$, 143.3, 137.5, 128.4, 127.8, 127.7, 111.4, 73.4, 73.1, 72.6, 48.4, 44.6, 19.6, 13.5, 8.2; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ 294.2069, found 294.2069; m/z $294\left(30,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 277(10,[\mathrm{M}+$ $\mathrm{H}^{+}$), 259 (28), 224 (32), 207 (100), 108 (30), 91 (30). Data for minor diastereomer ( $2 S, 4 S, 5 S$ )-1-(benzyloxy)-5-hydroxy-2,4,6-trimethyl-6-hepten-3-one ( $6(S A)$ ): see supplementary material.
(2S,3S,4S,5R,6E)-1-(Benzyloxy)-2,4-dimethyl-6-octene-3,5-diol (22). To a two-necked flask equipped with a septum inlet and reflux condenser, and containing a stirrer bead and two or three crystals of pivalic acid (catalytic), was added by syringe at room temperature tributylborane ( $3.76 \mathrm{~mL}, 15.4 \mathrm{mmol}$ ). Methanol ( $0.50 \mathrm{~mL}, 12.3 \mathrm{mmol}$ ) was added dropwise, whereupon evolution of butane gas was observed; the contents of the flask became very warm and started to reflux. The reaction was over in minutes and allowed to cool. The solution of di- $n$-butylmethoxyborane ( 12.3 mmol in $4.26 \mathrm{~mL} ; \sim 2.9 \mathrm{M}$ ) was cannulated into a fresh flask and stored in the freezer $\left(-20^{\circ} \mathrm{C}\right)$. It was quite stable at this temperature over a period of several weeks.

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of $\beta$-hydroxyketone 7 (SA) ( $1.11 \mathrm{~g}, 4.02 \mathrm{mmol}$ ) in THF ( 50 mL ) and methanol ( 10 mL ) was added di-n-butylmethoxyborane ( $1.8 \mathrm{~mL}, 5.2 \mathrm{mmol} ; \sim 2.9 \mathrm{M}$ ). After stirring at this temperature for 15 min , lithium borohydride solution ( 5.0 mL , $10.0 \mathrm{mmol} ; 2 \mathrm{M}$ in THF) was added and stirring continued for a further 1 h . The reaction was quenched at $-78^{\circ} \mathrm{C}$ by addition of pH 7 buffer solution ( 15 mL ) and methanol ( 15 mL ), then hydrogen peroxide solution ( $4 \mathrm{~mL} ; 30 \%$ aqueous) was added, and the reaction mixture was allowed to warm to room temperature and stirred for a further 1 $h$. The mixture was then heated under reflux for 15 min to destroy any remaining peroxide, before being partitioned between EtOAc ( 3 $\times 100 \mathrm{~mL})$ and distilled water $(100 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $10 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided 999 mg ( $89 \%$ ) of the desired syn-1,3-diol 22 (single isomer by $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) as a colorless oil: $[\alpha]^{20} \mathrm{D}=+49.9^{\circ}\left(c 4.2, \mathrm{CHCl}_{3}\right)$; TLC ( $10 \%$ diethyl
ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.28$; IR (thin film) 3400 (br), $1660(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.70(1 \mathrm{H}, \mathrm{dqd}$, $\left.J=15.3,6.3,0.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.51(1 \mathrm{H}, \mathrm{ddq}, J=15.3,6.0,1.3$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOH}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, \mathrm{CHOH}\left(\mathrm{CHCH}_{3}\right)_{2}\right)$, $3.60\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J=9.0$, 8.9 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 1.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right), 1.69(3 \mathrm{H}, \mathrm{br}$ d, $\left.J=6.3 \mathrm{~Hz}, H_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.60(1 \mathrm{H}, \mathrm{qdd}, J=7.0,2.0,1.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOH})_{2}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.75(3 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}, \mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.4,132.6,128.5$, $127.9,127.7,126.0,81.8,77.1,76.7,73.6,39.6,35.9,17.7,13.0,4.6 ;$ HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$279.1960, found 279.1953; m/z $279\left(9,[\mathrm{M}+\mathrm{H}]^{+}\right), 261$ (11), 243 (8), 207 (11), 196 (100), 179 (18), 108 (26), 99 (12), 91 (9).
(2E,4R,5S,6S,7S)-8-(Benzyloxy)-4,6-bis(tert-butyldimethylsiloxy)-5,7-dimethyl-2-octene (24). To a cooled ( $-78^{\circ} \mathrm{C}$ ) stirred solution of diol 22 ( $352 \mathrm{mg}, 1.27 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ) was added 2,6-lutidine ( $1.18 \mathrm{~mL}, 10.1 \mathrm{mmol}$ ) followed by tert-butyldimethylsilyl triflate ( 1.16 $\mathrm{mL}, 5.06 \mathrm{mmol}$ ). After stirring for 45 min at this temperature, the reaction was quenched by addition of ammonium chloride solution ( 50 mL ; saturated, aqueous). The layers were separated, and the aqueous phase was extracted with diethyl ether $(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with pH 7 buffer solution ( $2 \times 25 \mathrm{~mL}$ ), dried ( $\mathrm{MgSO}_{4}$ ), and concentrated in vacuo. Flash chromatography (5\% diethyl ether/hexanes) gave 554 mg ( $86 \%$ ) of the desired silyl ether 24 as a colorless oil: $[\alpha]^{20} \mathrm{D}=-10.7^{\circ}\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; TLC ( $5 \%$ diethyl ether/hexanes) $R_{f}=0.48$; IR (thin film) $1660(\mathrm{w}), 1250(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.48(1 \mathrm{H}, \mathrm{dq}, J$ $\left.=15.4,6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.33(1 \mathrm{H}, \mathrm{ddq}, J=15.4,7.2,1.1 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.47$ and $4.46\left(2 \mathrm{H}, \mathrm{ABq}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.91$ ( $1 \mathrm{H}, \mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHO}(\mathrm{TBS})$ ), 3.68 ( $1 \mathrm{H}, \mathrm{dd}, J=$ $\left.4.0,4.0 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,7.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 2.00$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right), 1.63\left(3 \mathrm{H}, \mathrm{dd}, J=6.2,1.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right)$, $1.63\left(1 \mathrm{H}\right.$, buried $\left.\mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHO}(\mathrm{TBS}))_{2}\right), 0.96(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\left.\left.\mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH})_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.00(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right),-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.8$, 134.1, 128.2, 127.4, 127.3, 126.6, 75.0, 73.5, 73.0, 72.9, 42.7, 39.2, $26.1,25.9,18.5,18.2,17.6,14.7,11.3,-3.0,-3.7,-3.8,-4.7$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{NO}_{3} \mathrm{Si}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 524.3955$, found $524.3955 ; m / z 524\left(1,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 507\left(1,[\mathrm{M}+\mathrm{H}]^{+}\right), 310(5), 293$ (100), 243 (28), 227 (56), 185 (43), 132 (46), 108 (48), 99 (50), 91 (52).
(2S,3S,4S,5R,6E)-3,5-Bis(tert-butyldimethylsiloxy)-2,4-dimethyl-6-octen-1-ol. To a stirred solution of 4,4'-di-tert-butylbiphenyl ( 4.88 $\mathrm{g}, 18.3 \mathrm{mmol}$ ) in THF ( 75 mL ) at room temperature was added lithium metal ( $254 \mathrm{mg}, 36.6 \mathrm{mmol}$ ) which had been washed in petroleum ether under argon. This mixture was stirred vigorously at room temperature for 5 min and then ultrasonicated at room temperature for 30 min during which time the dark green color of the radical anion rapidly developed. The air- and moisture-sensitive dark green solution ( $75 \mathrm{~mL} ; \sim 0.24 \mathrm{M}$ ) was further ultrasonicated for 3 h at $0-5^{\circ} \mathrm{C}$ before being cooled to $-78^{\circ} \mathrm{C}$ and used immediately.

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of alkene $24(981 \mathrm{mg}, 1.94$ mmol ) in THF ( 30 mL ) was added dropwise the LiDBB radical anion solution in portions ( 2 mL at a time), with a few minutes stirring between each addition, until a green color persisted in the reaction mixture and TLC analysis indicated complete consumption of starting material. The green solution was then stirred for a further 30 min at $-78^{\circ} \mathrm{C}$, before being quenched by careful addition of ammonium chloride solution ( 25 mL ; saturated, aqueous), and the now colorless mixture extracted with diethyl ether ( $3 \times 100 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: 0-20\% EtOAc/hexanes) gave recovered $4,4^{\prime}$-di-tert-butylbiphenyl crystals (which could be reused in subsequent reactions) and 806 mg (quantitative) of the desired alcohol as a colorless oil: $[\alpha]^{20} \mathrm{D}=+3.5^{\circ}\left(c 8.5, \mathrm{CHCl}_{3}\right)$; TLC $(20 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.37$; IR (thin film) 3400 (br), $1670(\mathrm{w}), 1260(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1}{ }^{1} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53\left(1 \mathrm{H}, \mathrm{dq}, J=15.4,6.2 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\mathrm{CCHC}=\mathrm{CH}), 5.38\left(1 \mathrm{H}, \mathrm{ddq}, J=15.4,7.1,1.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{C} H\right)$, $3.98\left(1 \mathrm{H}, \mathrm{dd}, J=7.1,5.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHO}(\mathrm{TBS})\right.$ ), $3.81(1 \mathrm{H}$,
dd, $\left.J=4.1,4.1 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, J=11.3$, 4.7 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.51\left(1 \mathrm{H}, \mathrm{dd}, J=11.3,6.6 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2}$ $\mathrm{OH}), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OH}\right), 1.77(1 \mathrm{H}$, qdd, $\left.J=7.0,5.3,4.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHO}(\mathrm{TBS}))_{2}\right), 1.68(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $\left.6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiCH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.8,126.9,76.5,74.6$, $65.3,42.6,39.9,26.1,26.0,18.3,18.3,17.7,13.9,12.1,-3.7,-4.0$, $-4.0,-4.7$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{22} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 417.3220, found 417.3214; $m / z 417$ (27, [M + H] ${ }^{+}$), 302 ( 100 ), 285 (50), 220 (58), 203 (21), 185 (33), 153 (52), 132 (23), 88 (18).
( $2 R, 3 R, 4 S, 5 R, 6 E$ )-3,5-Bis(tert-butyldimethylsiloxy)-2,4-dimethyl6 -octenal (25). To a cooled ( $-78^{\circ} \mathrm{C}$ ) stirred solution of freshly distilled oxalyl chloride ( $123 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added dropwise DMSO ( $200 \mu \mathrm{~L}, 2.82 \mathrm{mmol}$ ), and the mixture was stirred for 10 min to ensure complete formation of the chlorosulfur complex. The alcohol prepared above ( $235 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) was added in solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $10 \mathrm{~mL}+5 \mathrm{~mL}$ washings) via cannula and the reaction mixture stirred for a further 1 h at $-78{ }^{\circ} \mathrm{C}$. Triethylamine ( $589 \mu \mathrm{~L}$, 4.23 mmol ) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture allowed to warm to $-23^{\circ} \mathrm{C}$ only until no alcohol was evident by TLC (ca. 30 min ). The reaction was immediately quenched by addition of ammonium chloride solution ( 50 mL ; saturated, aqueous), the layers were separated, and the aqueous phase was extracted with diethyl ether (3 $\times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude aldehyde $\mathbf{2 5}$ was eluted through a short column of silica gel with diethyl ether, and the oil remaining after evaporation in vacuo was taken on to the next reaction within 24 h , without further purification: $[\alpha]^{20}{ }_{\mathrm{D}}=-27.5^{\circ}\left(c 4.4, \mathrm{CHCl}_{3}\right)$; TLC ( $6 \%$ diethyl ether/hexanes) $R_{f}=0.34$; IR (thin film) 2720 (w), 2700 (w), 1730 (s), 1670 (w), 1250 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.76(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHO}), 5.55(1 \mathrm{H}, \mathrm{dq}, J=15.4,6.3 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.39\left(1 \mathrm{H}, \mathrm{ddq}, J=15.4,6.9,1.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right)$, $4.02\left(1 \mathrm{H}, \mathrm{dd}, J=6.9,6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHO}(\mathrm{TBS})\right.$ ), $3.95(1 \mathrm{H}$, dd, $\left.J=4.6,4.6 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})\left(\mathrm{CHCH}_{3}\right)_{2}\right), 2.68(1 \mathrm{H}, \mathrm{qdd}, J=7.0$, $4.6,2.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHO}$ ), $1.72\left(1 \mathrm{H}\right.$, buried $\mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHO}(\mathrm{TBS})_{2}\right)$, $1.69\left(3 \mathrm{H}, \mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiCH}_{3}$ ), $-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.0$, 133.1, 127.2, 75.2, 74.0, 51.5, 44.3, 26.0, 25.9, 18.4, 18.2, 17.7, 11.5, 11.4, -3.8, -3.8, -4.0, -4.8; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{2}-$ Si ([M + NH $\left.-(\mathrm{TBS}) \mathrm{OH}]^{+}\right) 300.2359$, found $300.2353 ; \mathrm{m} / \mathrm{z} 300$ ( 1 , $\left.\left[\mathrm{M}+\mathrm{NH}_{4}-(\mathrm{TBS}) \mathrm{OH}\right]^{+}\right), 283$ (26), 225 (25), 201 (86), 185 (100), 151 (20), 143 (40), 132 (30), 86 (14).
( $2 R, 3 S, 4 S, 5 S, 6 R, 7 E)-4,6$-Bis(tert-butyldimethylsiloxy)-3,5-dimethyl-7-nonen-2-ol (26). To a cooled ( $-100^{\circ} \mathrm{C}$ ) stirred solution of aldehyde 25 prepared above (semicrude; theoretically 0.56 mmol ) in THF ( 15 mL ) was added dropwise by syringe a THF solution of methylmagnesium chloride ( $1.3 \mathrm{~mL}, 2.26 \mathrm{mmol} ; 1.74 \mathrm{M}$ ). The reaction mixture was stirred for 40 min , then quenched by dropwise addition of ammonium chloride solution ( 10 mL ; saturated, aqueous), and extracted with diethyl ether ( $3 \times 50 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. HPLC purification ( $15 \%$ EtOAc/hexanes) gave 25 mg of the $13 S$ product epimer 13 -epi-26 and 177 mg of the desired $13 R$ product epimer 26 as colorless oils in a total yield of $83 \%$ over two steps. Data for major diastereomer 26: $[\alpha]^{20}{ }_{\mathrm{D}}=+5.3^{\circ}\left(c 3.6, \mathrm{CHCl}_{3}\right) ;$ TLC ( $15 \% \mathrm{EtOAc} /$ hexanes ) $R_{f}=0.43$; HPLC ( $15 \%$ EtOAc/hexanes) $R_{t}=10.5 \mathrm{~min}$; IR (thin film) 3500 (br), $1670(\mathrm{w}), 1260(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.51(1 \mathrm{H}, \mathrm{dq}$, $\left.J=15.5,6.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHC}=\mathrm{CH}\right), 5.38(1 \mathrm{H}, \mathrm{ddq}, J=15.5,6.8,1.5$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.27\left(1 \mathrm{H}, \mathrm{qd}, J=6.4,1.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOH}\right), 3.96$ ( $1 \mathrm{H}, \mathrm{dd}, J=6.8,5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHO}(\mathrm{TBS})$ ), 3.72 ( $1 \mathrm{H}, \mathrm{dd}, J=$ $\left.6.7,2.0 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.50(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.84(1 \mathrm{H}, \mathrm{qdd}$, $\left.J=7.1,6.7,5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHO}(\mathrm{TBS}))_{2}\right), 1.68(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.0$ $\left.\mathrm{Hz}, H_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.59\left(1 \mathrm{H}, \mathrm{qdd}, J=7.1,2.0,1.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHOH}\right)$, 1.11 ( $3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOH}$ ), $0.99\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.95\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right),-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 133.2$, $126.6,79.3,75.8,66.6,43.7,41.2,26.2,25.9,20.9,18.4,18.2,17.6$,
$12.1,11.4,-3.5,-3.6,-3.8,-4.9$; HRMS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{23} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 431.3377$, found $431.3375 ; \mathrm{m} / \mathrm{z} 431$ (22, [M $\left.+\mathrm{H}^{+}\right), 299(72), 234(25), 199(25), 185(100), 167(55)$. Data for minor diastereomer ( $2 S, 3 S, 4 S, 5 S, 6 R, 7 E$ )-4,6-bis(tert-butyldimethylsi-loxy)-3,5-dimethyl-7-nonen-2-ol (13-epi-26): see supplementary material.
(2E,4R,5S,6S,7S,8R)-8-[(Benzyloxy)methoxy]-4,6-bis(tert-butyldim-ethylsiloxy)-5,7-dimethyl-2-nonene. To a stirred solution of alcohol 26 ( $384 \mathrm{mg}, 0.89 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature were added diisopropylethylamine ( $1.70 \mathrm{~mL}, 9.80 \mathrm{mmol}$ ) and (benzyloxy)methoxy chloride ( $1.24 \mathrm{~mL}, 8.90 \mathrm{mmol}$ ), and the reaction mixture was left stirring for 48 h . It was then partitioned between hydrochloric acid solution ( $20 \mathrm{~mL} ; 1 \mathrm{M}$ aqueous) and diethyl ether ( $3 \times 50 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $5 \% \mathrm{EtOAc} / \mathrm{hexanes} \mathrm{)} \mathrm{afforded} \mathrm{454}$ $\mathrm{mg}(92 \%)$ of the desired (benzyloxy)methyl ether as a colorless oil: $[\alpha]^{20} \mathrm{D}=-4.5^{\circ}\left(c 4.4, \mathrm{CHCl}_{3}\right)$; TLC $(5 \% \mathrm{EtOAc} /$ hexanes $) R_{f}=0.31$; IR (thin film) 1670 (w), 1260 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.35-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.53(1 \mathrm{H}, \mathrm{dq}, J=15.4,6.3 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.33\left(1 \mathrm{H}\right.$, ddq, $\left.J=15.4,8.0,1.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{C} H\right)$, $4.82\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{OCH}_{2} \mathrm{OBn}\right), 4.72(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, one of $\mathrm{OCH}_{2} \mathrm{OBn}$ ), 4.62 and $4.62\left(2 \mathrm{H}, \mathrm{ABq}, J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.86-3.77(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHO}(\mathrm{TBS})), 3.58(1 \mathrm{H}, \mathrm{dq}, J=7.3,6.2 \mathrm{~Hz}$, $\mathrm{H}_{3} \mathrm{CCHO}(\mathrm{BOM})$ ), $1.67\left(3 \mathrm{H}, \mathrm{dd}, J=6.3,1.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right.$ ), 1.62 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, $H_{3} \mathrm{CCHO}(\mathrm{BOM})$ ), $1.01\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05(6 \mathrm{H}, \mathrm{s}, 2$ $\left.\times \mathrm{SiCH}_{3}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} 3) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.1,134.2,128.4,127.8,127.6,127.1,93.5,77.0$, $75.5,71.4,69.4,47.0,41.8,26.0,26.0,19.4,18.4,18.3,17.6,11.7$, $11.6,-3.7,-3.9,-4.2,-4.6$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{4}$ $\mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 551.3952$, found $551.3946 ; m / z 551\left(32,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 419 (94), 354 (64), 299 (38), 185 (100), 132 (71), 108 (37).
(2S,3R,4S,5S,6R)-6-[(Benzyloxy)methoxy]-2,4-bis(tert-butyldim-ethylsiloxy)-3,5-dimethylheptanal (27). Ozone was bubbled through a cooled ( $-78^{\circ} \mathrm{C}$ ) stirred solution of the alkene prepared above ( 60 $\mathrm{mg}, 0.11 \mathrm{mmol})$ in diethyl ether $(1.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ until no starting material was evident by TLC ( $c a .15 \mathrm{~min}$ ). Dimethyl sulfide $(0.2 \mathrm{~mL}$, large excess) was then added and the solution allowed to warm to room temperature. After stirring for a further 15 min , the solution was concentrated in vacuo; flash chromatography ( $20 \% \mathrm{EtOAc} /$ hexanes) provided 58 mg (quantitative) of the desired aldehyde 27 as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-1.9^{\circ}\left(c 9.0, \mathrm{CHCl}_{3}\right)$; TLC $(20 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.46$; IR (thin film) 1740 (s), 1260 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.51(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{CHO}), 7.36-7.30(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 4.83\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{OCH}_{2} \mathrm{OBn}\right), 4.74(1 \mathrm{H}, \mathrm{d}, J$ $=7.0 \mathrm{~Hz}$, one of $\left.\mathrm{OCH}_{2} \mathrm{OBn}\right), 4.64$ and $4.62(2 \mathrm{H}, \mathrm{ABq}, J=11.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.2 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.83$ $(1 \mathrm{H}, \mathrm{dd}, J=7.3,2.9 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS}) \mathrm{CHO}), 3.63(1 \mathrm{H}, \mathrm{dq}, J=6.3,6.3$ $\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCHO}(\mathrm{BOM})$ ), $2.04\left(1 \mathrm{H}\right.$, dqd, $J=7.3,6.6,2.2 \mathrm{~Hz}, \mathrm{H}_{3}-$ $\left.\mathrm{CCH}(\mathrm{CHO}(\mathrm{TBS}))_{2}\right), 1.77\left(1 \mathrm{H}\right.$, qdd, $J=6.4,6.3,5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHO}-$ (BOM)), 1.24 (3H, d, $J=6.3 \mathrm{~Hz}, H_{3} \mathrm{CCHO}(\mathrm{BOM})$ ), $1.03(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $\left.0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} 3), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH})_{3}\right), 0.06$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $202.8,137.9,128.4,127.8,127.6,93.6,79.6,75.5,70.6,69.6,45.5$, $39.2,26.1,25.8,19.3,18.4,18.2,11.8,10.8,-3.6,-4.2,-4.5,-4.9$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{NO}_{5} \mathrm{Si}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 556.3854$, found $556.3854 ; \mathrm{m} / \mathrm{z} 556\left(1,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 431(18), 401$ (20), 299 (40), 271 (42), 257 (43), 137 (92), 108 (100), 91 (81).
( $\mathbf{2 S , 3 S , 4 R , 5 R , 6 S ) - 7 - ( B e n z y l o x y ) - 2 , 4 , 6 - t r i m e t h y l - 1 , 3 , 5 - h e p t a n e - ~}$ triol (28). ( + )-(Ipc) $)_{2} \mathrm{BH}(435 \mathrm{mg}, 1.52 \mathrm{mmol})$ was placed in a tared flask under nitrogen by means of a glovebag and weighed accurately. The flask was then flushed with argon, diethyl ether ( 4 mL ) added, and the resulting suspension cooled to $0^{\circ} \mathrm{C}$ followed by addition via cannula of a solution of $\beta$-hydroxyketone $6(S S)(134 \mathrm{mg}, 0.45 \mathrm{mmol})$ in diethyl ether ( $2 \mathrm{~mL}+1 \mathrm{~mL}$ washings). The effervescing reaction mixture was allowed to warm to room temperature and stirred for 2 h , before being recooled to $0^{\circ} \mathrm{C}, m$-CPBA ( $524 \mathrm{mg}, 3.04 \mathrm{mmol} ; \sim 99 \%$ purity ${ }^{81}$ ) added in small portions, and stirring continued for a further 1 h at room temperature. This was followed by addition of dimethyl sulfide ( 1 mL , excess) to destroy any remaining peracid and subsequent
stirring for 30 min . The reaction mixture was then poured into sodium hydroxide solution ( $10 \mathrm{~mL} ; 10 \%$ aqueous) and the aqueous phase saturated with sodium chloride and extracted with EtOAc ( $4 \times 10 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; flash chromatography ( $8 \%$ isopropyl alcohol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided 90.1 mg of the desired triol $28,5.1 \mathrm{mg}$ of the minor isomer 6 -epi- 28 and 4.9 mg of the minor isomer 3 -epi-28, in a total yield of $69 \%$. Data for major diastereomer 28: needles; $\mathrm{mp} 67-69{ }^{\circ} \mathrm{C}$ (from hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+9.3^{\circ}\left(c 2.3, \mathrm{CHCl}_{3}\right)$; TLC ( $8 \%$ isopropyl alcohol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.21$; IR (thin film) 3600 (br), 3430 (br) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.50$ and $4.48(2 \mathrm{H}, \mathrm{ABq}, J$ $\left.=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J=6.5,3.1 \mathrm{~Hz}, \mathrm{CHOH}), 3.70(1 \mathrm{H}$, dd, $J=9.4,1.8 \mathrm{~Hz}, \mathrm{CHOH}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=10.7,3.9 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,8.3 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.46(1 \mathrm{H}$, dd, $J=9.2,4.7 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 1.98\left(1 \mathrm{H}\right.$, qddd, $J=6.9,6.5,5.0,4.7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2^{-}}$ $\mathrm{OBn}), 1.88\left(1 \mathrm{H}\right.$, ddqd, $\left.J=9.4,8.3,6.9,3.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OH}\right), 1.80$ $\left(1 \mathrm{H}, \mathrm{qdd}, J=7.0,3.1,1.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOH})_{2}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}, \mathrm{CH} 3), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.72(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.1,128.4,127.6,127.5$, 82.6, 79.4, 74.1, 73.3, 69.1, 37.2, 36.8, 36.3, 13.4, 13.2, 5.5; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$297.2066, found 297.2071; $m / z 297$ (100, $[\mathrm{M}+\mathrm{H}]^{+}$), 279 (4), 261 (6), 207 (9), 108 (7), 91 (5). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}$ : $\mathrm{C}, 68.89 ; \mathrm{H}, 9.52$. Found: $\mathrm{C}, 68.64 ; \mathrm{H}$, 9.55. Data for minor diastereomers ( $2 R, 3 S, 4 R, 5 R, 6 S$ )-7-(benzyloxy)-2,4,6-trimethyl-1,3,5-heptanetriol (6-epi-28) and ( $2 S, 3 S, 4 R, 5 S, 6 S$ )-7-(benzyloxy)-2,4,6-trimethyl-1,3,5-heptanetriol (3-epi-28): see supplementary material.

Use of $(+)$-(Ipc) $)_{2} \mathrm{BH}(2.07 \mathrm{~g}, 7.24 \mathrm{mmol})$ and $6(S S)(400 \mathrm{mg}, 1.45$ mmol ) gave $319 \mathrm{mg}(76 \%)$ of the desired triol 28. Use of $(-)-(\mathrm{Ipc})_{2} \mathrm{BH}$ $(428 \mathrm{mg}, 1.50 \mathrm{mmol})$ and $6(S S)(135 \mathrm{mg}, 0.49 \mathrm{mmol})$ gave 58.6 mg of the desired triol $\mathbf{2 8}, 24.2 \mathrm{mg}$ of the minor isomer 6 -epi-28, and 10.2 mg of the minor isomer $3-$ epi-28, in a total yield of $64 \%$.
(2S,3S,4S,5R,6S)-7-(Benzyloxy)-3,5-dihydroxy-2,4,6-trimethylheptyl p-Toluenesulfonate. To a stirred solution of triol $28(360 \mathrm{mg}, 1.21$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature were added triethylamine ( $0.85 \mathrm{~mL}, 6.10 \mathrm{mmol}$ ) and a few crystals of DMAP (catalytic). A solution of $p$-toluenesulfonyl chloride ( $280 \mathrm{mg}, 1.45 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 mL ) was added via cannula and the reaction mixture stirred for 1.5 h. The solvent was then removed in vacuo and the mixture purified by flash chromatography ( $20 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ), yielding 518 mg $(95 \%)$ of the desired tosylate as a colorless oil: $[\alpha]^{20} \mathrm{D}=-4.3^{\circ}$ (c 9.2, diethyl ether); TLC ( $20 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.25$; IR (thin film) 3440 (br), 1590 (m), $1490(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.79\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H \alpha\right.$ to $\left.\mathrm{CSO}_{2}\right), 7.36-7.26(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, 4.48 and $4.47\left(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19(1 \mathrm{H}, \mathrm{dd}, J=9.5$, 5.3 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{OTs}\right), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,3.2 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2}-$ OTs), $3.75(1 \mathrm{H}$, ddd, $J=6.6,3.4,3.4 \mathrm{~Hz}, \mathrm{CHOH}), 3.56(1 \mathrm{H}$, ddd, $J$ $=9.8,2.7,2.7 \mathrm{~Hz}, \mathrm{CHOH}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=9.3,4.8 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.41\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.23(1 \mathrm{H}$, $\mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{OH}), 2.90(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{OH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, $1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, $1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7$, $138.0,132.9,129.8,128.4,127.9,127.7,127.5,79.2,76.1,74.2,73.4$, $73.2,36.8,36.5,35.7,21.6,13.3,13.1,5.3$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NO}_{6} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 468.2420$, found $468.2424 ; \mathrm{m} / \mathrm{z} 468$ ( $100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$), $451\left(14,[\mathrm{M}+\mathrm{H}]^{+}\right), 386$ (2), 296 (2).
(2S,3S,4S,5R,6S)-7-(Benzyloxy)-3,5-(isopropylidenedioxy)-2,4,6trimethylheptyl $\boldsymbol{p}$-Toluenesulfonate (34). To a solution of the tosylate prepared above ( $518 \mathrm{mg}, 1.15 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and $2,2-$ dimethoxypropane ( 8 mL ) at room temperature were added a few crystals of PPTS (catalytic). After 15 h of stirring, removal of the solvent in vacuo and subsequent flash chromatography ( $20 \% \mathrm{EtOAc} /$ hexanes) provided 522 mg ( $92 \%$ ) of the desired acetonide 34 as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=+6.7^{\circ}$ (c 3.8, diethyl ether); TLC ( $20 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.29$; IR (thin film) $1590(\mathrm{~m}), 1485(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H \alpha\right.$ to $\left.\mathrm{CSO}_{2}\right), 7.35-$
(81) $m$-CPBA ( $55-60 \%$ purity) was purchased from Lancaster Synthesis and purified by washing with pH 7.4 buffer: Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: Oxford, 1988; p 123 .
$7.26(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.51\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.43$ $\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.13(1 \mathrm{H}, \mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}$, one of $\mathrm{CH}_{2} \mathrm{OTs}$ ), $4.04\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OTs}\right), 3.61$ $\left(1 \mathrm{H}, \mathrm{dd}, J=6.2,2.0 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J=6.8,2.0$ $\left.\mathrm{Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.33\left(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 2.44(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{3}\right), 1.89-1.79\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 1.49(1 \mathrm{H}, \mathrm{qdd}, J=6.7,2.0$, $\left.2.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\left.\left.\mathrm{CH}_{3}\right), 0.77\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.5,138.3,133.0,129.6,128.2,127.8,127.5,127.4,98.9,75.8$, $73.1,72.8,72.3,71.4,34.9,34.4,30.4,29.7,21.5,19.4,14.6,11.7$, 4.7; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 491.2467$, found 491.2503; m/z $491\left(91,[\mathrm{M}+\mathrm{H}]^{+}\right), 450(100), 415(60), 342(52), 279$ (34), 261 (40), 196 (38), 171 (51), 108 (37).
(2S,3S,4S,5R,6S)-7-Hydroxy-3,5-(isopropylidenedioxy)-2,4,6-trimethylheptyl $\boldsymbol{p}$-Toluenesulfonate (35). To a solution of $p$-toluenesulfonate 34 ( $234 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) in diisopropyl ether ( 8 mL ) under an argon atmosphere was added palladium on activated charcoal (232 $\mathrm{mg}, 10 \% \mathrm{Pd}$ content). The reaction mixture was stirred while hydrogen (from a hydrogen-filled double balloon) replaced the argon. After 2 $h$, the catalyst was removed by elution with diethyl ether through a short column of Celite. Flash chromatography ( $20 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded $176 \mathrm{mg}(92 \%)$ of the desired alcohol 35 as colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-3.5^{\circ}\left(c 5.0, \mathrm{CHCl}_{3}\right)$; TLC ( $15 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.28$; IR (thin film) 3400 (br) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.76\left(2 \mathrm{H}\right.$, br d, $J=8.3 \mathrm{~Hz}, \mathrm{ArH} \alpha$ to $\left.\mathrm{CSO}_{2}\right), 7.32(2 \mathrm{H}, \mathrm{brd}, J=8.3$ $\mathrm{Hz}, \mathrm{Ar} H \alpha$ to $\left.\mathrm{CCH}_{3}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,4.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OTs}\right)$, $4.01\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OTs}\right), 3.62-3.44(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}, 2 \times \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.89-1.72(2 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CHCH}_{3}\right), 1.54\left(1 \mathrm{H}\right.$, qdd, $J=6.8,2.0,2.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOC}-$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 0.99(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d}, J=$ $6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$ ) ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.6,133.0,129.7$, $127.9,99.0,75.5,72.8,72.3,64.1,36.7,34.5,30.5,29.7,21.6,19.4$, 13.8, 11.8, 4.8; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ 418.2263, found $418.2267 ; m / z 418\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 401(17,[\mathrm{M}$ $+\mathrm{H}^{+}$), 360 (13), 342 (7), 264 (8), 247 (9), 52 (22).
(2S,3R,4S,5R,6R)-3,5-(Isopropylidenedioxy)-2,4,6-trimethyl-7-(phenylthio)heptan-1-ol (36). To a stirred solution of thiophenol (0.92 $\mathrm{mL}, 8.96 \mathrm{mmol}$ ) in THF ( 11.3 mL ) at room temperature was added dropwise $n$-butyllithium solution ( $5.00 \mathrm{~mL}, 8.15 \mathrm{mmol} ; 1.63 \mathrm{M}$ in hexanes) to give a colorless solution of lithium thiophenolate which was used immediately (total volume $16.3 \mathrm{~mL} ; \sim 0.5 \mathrm{M}$ ).

To a stirred solution of the $p$-toluenesulfonate 35 ( $380 \mathrm{mg}, 0.95$ $\mathrm{mmol})$ in THF ( 20 mL ), at room temperature in a flask equipped with a reflux condenser, was added a THF solution of lithium thiophenolate ( $9.49 \mathrm{~mL}, 4.75 \mathrm{mmol} ; \sim 0.5 \mathrm{M}$ ). The colorless reaction mixture was heated under reflux for 3 h and then partitioned between sodium hydroxide solution ( 50 mL ; $10 \%$ aqueous) and diethyl ether ( $3 \times 50$ $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $20 \%$ diethyl ether/ $/ \mathrm{CH}_{2}$ $\mathrm{Cl}_{2}$ ) provided 320 mg (quantitative) of the desired sulfide 36 as a colorless oil: $[\alpha]^{20}{ }_{D}=-13.3^{\circ}\left(c 2.2, \mathrm{CHCl}_{3}\right)$; TLC ( $20 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.46$; IR (thin film) $3400(\mathrm{br}) \mathrm{cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR ( 250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.07(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.67-3.59\left(3 \mathrm{H}, \mathrm{m}\right.$, one of $\mathrm{CH}_{2}-$ $\left.\mathrm{OH}, 2 \times \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.53\left(1 \mathrm{H}\right.$, dd, $J=10.8,5.3 \mathrm{~Hz}$, one of $\mathrm{CH}_{2}$ $\mathrm{OH}), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.6 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 2.70(1 \mathrm{H}, \mathrm{dd}$, $J=12.8,8.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 1.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.80(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{3}\right), 1.61\left(1 \mathrm{H}\right.$, qdd, $J=6.8,2.1,2.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOC}-$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.02(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,128.7,127.9$, $125.1,99.0,76.2,75.6,64.1,37.0,36.7,35.0,31.1,29.9,19.5,14.0$, 14.0, 5.1; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 339.1994$, found 339.1998; m/z $339\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right.$), 298 (20), 281 (76), 263 (46).
(SRS,2S,3R,4S,5R,6R)-3,5-(Isopropylidenedioxy)-2,4,6-trimethyl-7-(phenylsulfinyl)heptan-1-ol (33). To a stirred solution of sulfide $36(223 \mathrm{mg}, 0.66 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ at room temperature were added sodium periodate ( $155 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) and distilled water $(1 \mathrm{~mL})$, and the reaction mixture was left stirring for 21 h . It was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and distilled water ( 20 mL ).

The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Elution with diethyl ether through a short column of silica gel gave 233 mg (quantitative) of two diastereomeric sulfoxides 33 in a $2: 3$ ratio, as a colorless oil. These were not separated: TLC (diethyl ether) $R_{f}$ $=0.18$; IR (thin film) 3400 (br) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta 7.66-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H o-H), 7.53-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{ArHm}$ - and $p-H)$, 3.64-3.44 (4H, m, $\left.\mathrm{CH}_{2} \mathrm{OH}, 2 \times \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.11(2 / 5 \times 1 \mathrm{H}$, dd, $J=13.0,3.9 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.95(3 / 5 \times 1 \mathrm{H}$, dd, $J=13.2$, 4.7 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.64(3 / 5 \times 1 \mathrm{H}$, dd, $J=13.2,7.2 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.43(2 / 5 \times 1 \mathrm{H}, \mathrm{dd}, J=13.0$, 8.8 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.20-2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.78-1.63$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 1.36\left(2 / 5 \times 6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.34(3 / 5 \times 3 \mathrm{H}$, s, $\left.\mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.33\left(3 / 5 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.05(2 / 5 \times 3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.03\left(3 / 5 \times 3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00(2 / 5 \times 3 \mathrm{H}$, d, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(3 / 5 \times 3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.83(3 \mathrm{H}$, d, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 145.8,145.1$, $131.0,130.9,129.4,129.3,124.3,124.2,99.3,99.2,77.5,76.9,75.8$, $37.0,32.2,31.2,31.2,30.9,29.8,19.6,19.6,15.3,14.5,14.0,5.0,4.9$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 355.1943$, found 355.1940; m/z 355 (100, [M + H] ${ }^{+}$), 297 (38).
( $\mathbf{2 S}, \mathbf{3 R}, 4 R, 5 S, 6 S, 8 R S, 9 S, 10 R, 11 S, 12 S, 13 R)-13-[(B e n z y l o x y)-$ methoxy]-9,11-bis(tert-butyldimethylsiloxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12-pentamethyltetradecane-1,8-diol (38). To a cooled (-78 ${ }^{\circ} \mathrm{C}$ ) stirred solution of sulfoxides $33(60.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry DME ( 8 mL ) was added dropwise a solution of LDA-mono-THF complex ( $225 \mu \mathrm{~L}, 0.34 \mathrm{mmol} ; 1.5 \mathrm{M}$ in cyclohexane). The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min followed by addition via cannula of a solution of aldehyde $27(50.0 \mathrm{mg}, 92.8 \mu \mathrm{~mol})$ in DME ( $1.0 \mathrm{~mL}+0.5 \mathrm{~mL}$ washings). The reaction was quenched after 5 min by addition of ammonium chloride solution ( 2 mL ; saturated, aqueous) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and partitioned between ammonium chloride solution ( 20 mL ; saturated, aqueous) and diethyl ether ( $3 \times 25 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: $40-100 \%$ EtOAc/hexanes) provided 30.1 mg of recovered sulfoxides 33 as well as 66.2 mg ( $80 \%$ conversion, $88 \%$ based on unrecovered sulfoxides) of a mixture of several adducts 37 , each as a colorless oil.

To a vigorously stirred solution of the mixture of adducts prepared above ( $66.2 \mathrm{mg}, 74.1 \mu \mathrm{~mol}$ ) in diethyl ether ( 6 mL ) at room temperature was added a spatula end of a slurry of W-2 Raney nickel in ethanol. ${ }^{82}$ After 1.5 h of stirring, the Raney nickel was removed by elution through a short column of Celite with diethyl ether, taking care that the Raney nickel was not allowed to become dry. The solvent was removed in vacuo; subsequent flash chromatography ( $30 \%$ EtOAc/hexanes) afforded 37.2 mg ( $65 \%$ ) of a mixture of diastereomers and $\mathrm{C}_{8}$ OTBS regioisomers, comprising two major and two minor components, as a colorless oil. Data for the major high $\mathrm{R}_{f}$ component: TLC ( $30 \%$ EtOAc/hexanes) $R_{f}=0.47 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.82\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.75(1 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Ph}), 4.56\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.93(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0$ $\mathrm{Hz}, \alpha$ to O ), $3.80-3.43(6 \mathrm{H}, \mathrm{m}, \alpha$ to O$), 3.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.2 \mathrm{~Hz}$, $\alpha$ to O$), 1.98-1.60\left(7 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CHCH}_{3}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.36(6 \mathrm{H}, \mathrm{s}$, $\left.H_{3} \mathrm{CCCH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, H_{3} \mathrm{CCHO}(\mathrm{BOM})\right), 1.02(3 \mathrm{H}, \mathrm{d}, J$ $\left.=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91-0.87\left(6 \mathrm{H}\right.$, buried, $\left.2 \times \mathrm{CH}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.05$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$. Data for the major low $\mathrm{R}_{f}$ component: TLC ( $30 \%$ EtOAc/hexanes) $R_{f}=0.39 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.82\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.75(1 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}\right.$, one of $\mathrm{CH}_{2}-$ $\mathrm{Ph}), 4.57\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.79-3.41(7 \mathrm{H}, \mathrm{m}, \alpha$ to O$), 3.30(1 \mathrm{H}$, br d, $J=11.6 \mathrm{~Hz}, \alpha$ to O$), 1.72-1.51(7 \mathrm{H}, \mathrm{m}, 5 \times$ $\left.\mathrm{CHCH}_{3}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.2$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCHO}(\mathrm{BOM})\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J$ $\left.=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(3 \mathrm{H}\right.$, buried d, $\left.\mathrm{CH}_{3}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.10$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.09\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$.
(82) Mozingo, R. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 181.
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 S, 10 R, 11 S, 12 S, 13 R$ )-9,11-Bis(tert-butyldimeth-ylsiloxy)-13-hydroxy-3,5-(isopropylidenedioxy)-2,4,6,10,12-pentam-ethyl-8-oxotetradecanolc Acid (40). To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ stirred solution of oxalyl chloride ( $84 \mu \mathrm{~L}, 0.96 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise DMSO ( $103 \mu \mathrm{~L}, 1.45 \mathrm{mmol}$ ), and the mixture was stirred for 5 min to ensure complete formation of the chlorosulfur complex. A solution of the mixture of diols from the Raney Ni reaction above (i.e., $38+\mathrm{C}_{8}$ OTBS regioisomers; 37.2 mg total, $48.4 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}+0.5 \mathrm{~mL}$ washings) was then added via cannula and the reaction mixture stirred for a further 30 min at $-78^{\circ} \mathrm{C}$. Triethylamine ( $236 \mu \mathrm{~L}, 1.69 \mathrm{mmol}$ ) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture allowed to warm to $-23^{\circ} \mathrm{C}$ only until no starting material was evident by TLC (ca. 20 min ). The reaction was immediately quenched by addition of ammonium chloride solution ( 3 mL ; saturated, aqueous), the layers were separated, and the aqueous phase was extracted with diethyl ether ( $3 \times 20 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude ketoaldehyde was eluted through a short column of silica gel with diethyl ether, and the oil remaining after evaporation in vacuo was taken on to the next reaction, without further purification.

To a vigorously stirred solution of the product from the above Swern reaction (theoretically $48.4 \mu \mathrm{~mol}$ ) in tert-butyl alcohol ( 2 mL ) and pH 7 buffer ( 2 mL ) at room temperature was added dropwise potassium permanganate solution ( $0.5 \mathrm{~mL} ; 1 \mathrm{M}$ aqueous). The reaction mixture was stirred for 30 min and then diluted with brine ( 10 mL ; saturated). The aqueous layer was saturated with sodium chloride and acidified to pH 3 by dropwise addition of hydrochloric acid solution ( 1 M aqueous) and then extracted with diethyl ether ( $3 \times 20 \mathrm{~mL}$ ) followed by ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Elution through a short column of silica gel with ethyl acetate (containing a few drops of acetic acid), followed by removal of the solvent in vacuo, gave reasonably pure acid (two regioisomers) as a colorless oil which was taken on to the next reaction without further purification.
To a solution of the mixture of acids prepared above (theoretically $48.4 \mu \mathrm{~mol}$ ) in ethanol ( 4 mL ) under an argon atmosphere was added palladium on activated charcoal (spatula end, $10 \%$ Pd content). The reaction mixture was stirred while hydrogen (from a hydrogen-filled double balloon) replaced the argon. After 1.5 h the catalyst was removed by elution with diethyl ether through a short column of Celite. Flash chromatography ( $40 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ), on a column of silica gel prewashed with solvent containing a few drops of acetic acid, afforded 5.0 mg ( $16 \%$ over three steps) of an undesired $\mathrm{C}_{8}$ OTBS regioisomer ( $\mathbf{4 1}$ ) and 16.4 mg ( $51 \%$ over three steps) of the desired seco-acid 40, both as colorless oils, in a total yield of $67 \%$ over three steps. Data for seco-acid 40: TLC ( $40 \%$ EtOAc/hexanes) $R_{f}=0.21$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.34(1 \mathrm{H}, \mathrm{qd}, J=6.8,1.1 \mathrm{~Hz}, \mathrm{CHOH})$, 3.98 ( $1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}$, (TBS)OCHC=O), 3.84 ( $1 \mathrm{H}, \mathrm{dd}, J=9.3,1.6$ $\mathrm{Hz}, \alpha$ to O$), 3.67(1 \mathrm{H}, \mathrm{dd}, J=7.3,2.1 \mathrm{~Hz}, \alpha$ to 0$), 3.49(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=9.6,2.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{CHCO}_{2} \mathrm{H}\right), 2.74(1 \mathrm{H}, \mathrm{dd}, J=17.6,2.5$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.65\left(1 \mathrm{H}, \mathrm{dq}, J=9.6,7.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCO}_{2} \mathrm{H}\right)$, $2.22\left(1 \mathrm{H}, \mathrm{dd}, J=17.6,9.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.22(1 \mathrm{H}$, buried m, $\mathrm{CHCH}_{3}$ ), $2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.66-1.58\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 1.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, $H_{3} \mathrm{CCHOH}$ ), 1.14 ( $3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}$ ), 1.01 ( $3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 211.5,178.7$, $99.4,79.8,78.8,76.4,74.9,66.4,41.8,41.5,40.2,31.1,30.2,29.8$, $26.2,25.8,25.6,21.1,19.6,18.4,18.3,15.0,14.7,11.4,11.2,4.8,-3.5$, $-3.5,-4.2,-4.8$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{34} \mathrm{H}_{67} \mathrm{O}_{7} \mathrm{Si}_{2}([\mathrm{M}+\mathrm{H}$ $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}$) 643.4425 ; found 643.4440; $\mathrm{m} / \mathrm{z} 643$ ( $51,\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$), 290 (31), 257 (30), 245 (82), 215 (38), 201 (24), 132 (54), 92 (40), 72 ( 30 ), 58 ( 71 ), 52 (100). Data for minor component ( $2 R, 3 S, 4 R, 5 S, 6 S, 8 ?,-$ $10 R, 11 S, 12 S, 13 R$ )-8,11-bis(tert-butyldimethylsiloxy)-13-hydroxy-3,5-(isopropylidenedioxy)-2,4,6,10,12-pentamethyl-9-oxotetradecanoic acid (41): see supplementary material.
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 S, 10 R, 11 S, 12 S, 13 R$ )-9,11-Bis $($ tert-butyldimeth-ylsiloxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-oxotetradecanolide (42). To a stirred solution of seco-acid 40 ( 16.4 mg , $24.8 \mu \mathrm{~mol}$ ) in dry THF ( 1 mL ) at room temperature was added dropwise
triethylamine ( $5.2 \mu \mathrm{~L}, 37.2 \mu \mathrm{~mol}$ ) followed by $2,4,6$-trichlorobenzoyl chloride ( $4.3 \mu \mathrm{~L}, 27.5 \mu \mathrm{~mol}$ ). The reaction mixture was stirred for 2 h , during which time it became cloudy. The reaction mixture was then filtered through a pad of glass wool, to remove precipitated triethylamine hydrochloride. The filtrate, kept under argon as much as possible, was then diluted with dry toluene to give 10 mL of a solution of mixed anhydride.

To a heated $\left(80^{\circ} \mathrm{C}\right)$ solution of DMAP ( $\left.16.5 \mathrm{mg}, 135 \mu \mathrm{~mol}\right)$ in dry toluene ( 3 mL ), in a flask equipped with a reflux condenser and septum inlet, was slowly added (over 3 h , by syringe pump) the solution of the mixed anhydride prepared above ( 10 mL of solution in toluene, theoretically $24.8 \mu \mathrm{~mol}$ ). After addition the reaction mixture was stirred for a further 30 min at $80^{\circ} \mathrm{C}$, before being cooled to room temperature and concentrated in vacuo. Flash chromatography ( $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether) afforded 9.6 mg ( $60 \%$ ) of the desired macrolactone 42 as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-3.8^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$; TLC $\left(40 \% \mathrm{CH}_{2^{-}}\right.$ $\mathrm{Cl}_{2}$ /petroleum ether) $R_{f}=0.36$; IR ( $\mathrm{CHCl}_{3}$ solution) 1700 (s), 1250 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.19(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{C}_{13} H\right), 4.47\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 3.82(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}$, $\left.\mathrm{C}_{9} H\right), 3.56\left(1 \mathrm{H}\right.$, br d, $\left.J=10.8 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.14(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\left.\mathrm{C}_{11} H\right), 3.00\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.65(1 \mathrm{H}, \mathrm{dq}, J=10.8,6.6 \mathrm{~Hz}$, $\left.\mathrm{C}_{2} \mathrm{H}\right), 2.54-2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H\right.$ and one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.96(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.10.6,6.6 \mathrm{~Hz}, \mathrm{C}_{10} \mathrm{H}\right), 1.60-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right.$ and $\left.\mathrm{C}_{12} \mathrm{H}\right), 1.41(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{3} \mathrm{CCCH}_{3}$ ), $1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C}_{13} \mathrm{CH}_{3}\right)$, $1.08\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02\left(6 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.97$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.19$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$ ), 0.06 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$ ), $0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.03$ ( 3 H , $\mathrm{s}, \mathrm{SiCH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.5,173.8,99.7,81.7$, $75.6,72.0,71.4,71.4,43.7,40.2,40.1,38.6,32.8,30.5,29.7,26.3$, $25.7,19.5,18.8,18.4,18.0,15.6,12.4,10.1,8.7,7.7,-2.8,-4.9,-5.0$, -5.7 ; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{34} \mathrm{H}_{7} \mathrm{NO}_{7} \mathrm{Si}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ 660.4690 , found $660.4692 ; \mathrm{m} / \mathrm{z} 660\left(10,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 602(26), 585$ (45), 453 (57), 323 (38), 199 (32), 132 (40), 109 (100), 92 (45), 58 (65).
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R, 11 R, 12 R, 13 R$ )-3,5,9,11-Tetrahydroxy$\mathbf{2 , 4 , 6 , 1 0 , 1 2 , 1 3}$-hexamethyl-8-methylenetetradecanolide (46). 46 was prepared according to the procedure published by Tatsuta et al.. ${ }^{6 a}[\alpha]^{20} \mathrm{D}$ $=+28.6^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right)$; TLC ( $70 \% \mathrm{EtOAc}$ in hexane) $R_{f}=0.31$; IR ( $\mathrm{CHCl}_{3}$ solution) $3480(\mathrm{br}), 1700(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 5.50\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.34(1 \mathrm{H}, \mathrm{qd}, J=6.6,1.2 \mathrm{~Hz}$, $H \mathrm{COC}=\mathrm{O}), 5.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.32(1 \mathrm{H}, \mathrm{brs}, \mathrm{CHOH})$, $3.94(1 \mathrm{H}, \mathrm{br}$ d, $J=10.0 \mathrm{~Hz}, \mathrm{CHOH}), 3.76(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{CHOH})$, $3.71(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{OH}), 3.65(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{OH}), 3.16$ ( 1 H , ddd, $J=10.5,5.0,2.5 \mathrm{~Hz}, \mathrm{CHOH}$ ), $2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.66$ $\left(1 \mathrm{H}, \mathrm{dq}, J=10.4,6.7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCO}_{2} \mathrm{R}\right), 2.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}-\right.$ $\mathrm{CCHCH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ ), $2.10(1 \mathrm{H}$, br s, OH$), 2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.92$ ( $1 \mathrm{H}, \mathrm{dd}, J=18.5,1.8 \mathrm{~Hz}$, one of $\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ ) $1.81(1 \mathrm{H}, \mathrm{dd}, J=$ $18.5,9.2 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.64-1.55\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right)$, $1.28\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, H_{3} \mathrm{CCHOC}=\mathrm{O}\right), 1.25(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.11\left(6 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.00(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ), $0.81\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ correlations between $\delta 0.81$ and $1.64,1.00$ and $1.55,1.11$ and 2.06 , 1.11 and $2.42,1.25$ and $2.66,1.28$ and $5.34,1.64$ and $3.16,1.81$ and $1.92,2.66$ and $3.76,5.05$ and $5.50 ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $177.2,147.8,108.9,79.0,78.4,76.6,71.7,69.2,43.9,42.2,37.0,35.3$, $34.3,34.2,18.4,17.3,14.6,9.2,8.4,6.7$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 373.2590$, found 373.2590 ; m/z 373 ( 40 , $[\mathrm{M}+$ $\mathrm{H}^{+}$), 355 (31), 178 (72), 162 (38), 146 (41), 130 (100), 113 (29), 95 (21). The spectroscopic data are in agreement with data kindly provided by Prof. K. Tatsuta. ${ }^{6 \mathrm{a}}$
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R, 11 R, 12 R, 13 R$ )-9,11-Dibydroxy-3,5-(iso-propylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-methylenetetradecanolide (47). To a solution of tetrol 46 ( $687 \mathrm{mg}, 1.84 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and 2,2-dimethoxypropane ( 15 mL ) at room temperature were added a few crystals of PPTS (catalytic). After 3 h of stirring, removal of the solvent in vacuo and subsequent flash chromatography ( $40 \%$ EtOAc/hexanes) provided $591 \mathrm{mg}(78 \%)$ of the desired $\mathrm{C}_{3}, \mathrm{C}_{5}$ monoacetonide product 47 and $123 \mathrm{mg}(15 \%)$ of the $\mathrm{C}_{3}, \mathrm{C}_{5}: \mathrm{C}_{9}, \mathrm{C}_{11}$ bisacetonide product, both as colorless oils. Data for monoacetonide product 47: $[\alpha]^{20}{ }_{\mathrm{D}}=+22.9^{\circ}$ (c 1.4, $\mathrm{CHCl}_{3}$ ); TLC ( $40 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.30$; IR ( $\mathrm{CHCl}_{3}$ solution) 3507 (br), $1713(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.46(1 \mathrm{H}$, $\mathrm{q}, J=6.6 \mathrm{~Hz}, H \mathrm{COC}=\mathrm{O}), 5.09\left(1 \mathrm{H}, \mathrm{br}\right.$ s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.33(1 \mathrm{H}$, d, $\left.J=6.1 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.01(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{CHOH})$, $3.63(1 \mathrm{H}, \mathrm{br}$ d, $J=9.8 \mathrm{~Hz}, \mathrm{CHOH}), 3.47(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}$, $\left.\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.31(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{OH}), 3.03(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}$, $\mathrm{OH}), 2.65\left(1 \mathrm{H}, \mathrm{dq}, J=10.7,6.6 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCO} \mathrm{C}_{2} \mathrm{R}\right), 2.50(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.98(1 \mathrm{H}$, br d, $J=18.2$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.83(1 \mathrm{H}, \mathrm{dd}, J=18.2,11.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.60-1.50\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 1.44\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right)$, $1.26\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, H_{3} \mathrm{CCHOC}=0\right), 1.13(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2$ $\left.\times \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 175.7,147.5,109.1,100.5,79.0,77.6,72.4,71.9,69.5,42.6,41.5$, $35.2,34.5,32.3,32.0,29.7,19.9,18.6,16.2,13.2,9.5,8.7,7.6$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 413.2903$, found 413.2903; $m / z 430\left(13,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 413\left(78,[\mathrm{M}+\mathrm{H}]^{+}\right), 372(60), 355(100)$, 337 (60). Data for bis-acetonide product ( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R$,$11 S, 12 S, 13 R$ )-3,5:9,11-bis(isopropylidenedioxy)-2,4,6,10,12,13-hexam-ethyl-8-methylenetetradecanolide: TLC ( $40 \%$ EtOAc/hexanes) $R_{f}=$ 0.65 ; IR (thin film) $1725(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $5.56\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.42(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, H \mathrm{COC}=0)$, $5.16\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.19\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.13$ $\left(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.51(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{CHOC}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 3.37\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.62(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.10.7,6.6 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCO}_{2} \mathrm{R}\right), 2.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$, 2.05 $\left(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.93-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.63$ $\left(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\mathrm{CCCH}_{3}$ ), $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.24(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOC}=\mathrm{O}\right), 1.07(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.8,144.7,113.8,100.7$, $100.0,80.6,76.9,71.7,69.4,68.4,40.9,40.1,33.6,32.4,32.3,30.9$, 29.6, 28.9, 26.7, 19.6, 18.5, 16.1, 12.8, 11.6, 7.7, 7.3; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$453.3216, found 453.3216; m/z 453 $\left(20,[\mathrm{M}+\mathrm{H}]^{+}\right), 395(38), 337$ (100), 319 (39), 226 (40), 209 (42), 193 (36), 149 (100).
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R, 11 S, 12 S, 13 R)-9,11-B i s(t e r t-b u t y l d i m e t h-$ ylsiloxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-methylenetetradecanolide (48). To a gently stirred solution of diol 47 ( $231 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$ ) at room temperature was added 2,6 -lutidine ( $0.52 \mathrm{~mL}, 4.46 \mathrm{mmol}$ ) followed by tertbutyldimethylsilyl triflate ( $0.51 \mathrm{~mL}, 2.23 \mathrm{mmol}$ ). After stirring for 84 h , the reaction mixture was eluted through a short column of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo. Flash chromatography ( $30 \%$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether) gave 246 mg ( $69 \%$ ) of the desired bis(silyl ether) 48 as a colorless oil: $\operatorname{TLC}\left(30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $) R_{f}=$ 0.24 ; IR ( $\mathrm{CHCl}_{3}$ solution) 1710 (s), $1250(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.45\left(1 \mathrm{H}\right.$, br s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}$, $H C O C=0), 5.13\left(1 \mathrm{H}\right.$, br s , one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, J=6.6$, $\left.1.6 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.06(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})), 3.55$ $\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.6 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.55(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{CHO}(\mathrm{TBS})$ ), $2.66\left(1 \mathrm{H}, \mathrm{dq}, J=11.0,6.7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCO}_{2} \mathrm{R}\right), 2.48(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH} \mathrm{C}_{2} \mathrm{C}=\mathrm{CH}_{2}$ ), $2.00-1.83\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{CHCH}_{3}\right), 1.78$ $\left(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCCH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\mathrm{CCHOC}=0), 1.09\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.02$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.6,148.0,109.7$, 99.6, 80.6, 76.1, 72.2, 72.1, 71.9, 44.9, 40.1, 37.4, 36.4, 33.0, 32.6, $29.8,26.5,26.3,19.5,19.1,19.1,18.8,16.8,12.3,10.6,10.5,7.8,-1.6$, $-4.1,-4.6,-5.0 ;$ HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{35} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 641.4633, found 641.4633; m/z $641\left(1,[\mathrm{M}+\mathrm{H}]^{+}\right), 583$ (5), 509 (11), 451 (42), 319 (48), 273 (30), 199 (100), 132 (18).
( $\mathbf{2 R}, \mathbf{3 S , 4 R}, 5 S, 6 S, 9 R, 10 R, 11 S, 12 S, 13 R$ )-9,11-Bis(tert-butyldimeth-ylsiloxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-oxotetradecanolide (45). Ozone was bubbled through a cooled ( -78 ${ }^{\circ} \mathrm{C}$ ) stirred solution of alkene $48(200 \mathrm{mg}, 0.31 \mathrm{mmol})$ in ethyl acetate $(10 \mathrm{~mL})$, until no starting material was evident by TLC (ca. 90 min ). Dimethyl sulfide ( 2 mL , large excess) was then added and the solution
allowed to warm to room temperature. After stirring for a further 30 min , the solution was concentrated in vacuo; flash chromatography ( $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether) provided 169 mg ( $84 \%$ ) of the desired ketone 45 as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-4.2^{\circ}\left(c 2.4, \mathrm{CHCl}_{3}\right)$; TLC ( $40 \%$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether) $R_{f}=0.18$; IR ( $\mathrm{CHCl}_{3}$ solution) 1700 (s), 1250 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.16(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{C}_{13} H\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{C}_{9} H\right), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{5} H\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.6 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.28(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{11} H\right), 2.65\left(1 \mathrm{H}, \mathrm{dq}, J=10.8,6.7 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=17.5$ Hz , one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H\right), 2.35(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.28\left(1 \mathrm{H}, \mathrm{qd}, J=6.7,4.5 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 1.70(1 \mathrm{H}, \mathrm{qdd}, J=$ $\left.6.7,1.6,1.6 \mathrm{~Hz}, \mathrm{C}_{4} H\right), 1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} H\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right)$, $1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C}_{13} \mathrm{CH}_{3}\right), 1.07(3 \mathrm{H}$, d, $\left.J=6.7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{CH}_{3}\right), 1.03\left(6 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{CH}_{3}, \mathrm{C}_{10} \mathrm{CH}_{3}\right), 0.97$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{C}_{12} \mathrm{CH}_{3}\right), 0.87$ $\left(18 \mathrm{H}, \mathrm{s}, 2 \times\left(\mathrm{CH}_{3}\right)_{3}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{11} \mathrm{OSiCH}_{3}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{9} \mathrm{OSiCH}_{3}\right)$, $-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{9} \mathrm{OSiCH}_{3}\right),-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{11} \mathrm{OSiCH}_{3}\right) ; \mathrm{COSY}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) correlations between $\delta 0.90$ and $1.47,0.97$ and 1.70 , 1.03 and $2.28,1.03$ and $2.57,1.07$ and $2.65,1.23$ and $5.16,1.47$ and 3.28, 2.28 and $4.45,2.35$ and $2.60,2.57$ and $2.60,2.57$ and $4.41,2.65$ and 3.59 ; long-range $\operatorname{COSY} \delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ additional correlations between $\delta 1.70$ and $3.59,1.70$ and 4.41; NOE difference experiment $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ irradiation at 4.45 gave enhancements at $\delta(\%)$ $2.35(4.2), 2.28$ (6.8), $0.12(3.0),-0.02$ (3.3); irradiation at 3.59 gave enhancements at $\delta(\%) 4.41$ (9.7), 2.65 (2.1), 1.70 (4.5), 1.42 (9.0), 1.07 (4.2), -0.05 (2.7); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.5,173.6$, $99.7,82.6,75.2,72.6,71.6,71.4,44.9,43.6,40.0,38.3,32.9,31.0$, $29.7,26.5,26.1,19.7,19.1,19.0,18.6,15.6,12.3,10.7,9.9,7.8,-1.7$, $-4.3,-5.3,-5.4$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{34} \mathrm{H}_{7} \mathrm{NO}_{7} \mathrm{Si}_{2}$ ( $[\mathrm{M}+$ $\left.\left.\mathrm{NH}_{4}\right]^{+}\right) 660.4691$, found $660.4691 ; \mathrm{m} / \mathrm{z} 660\left(3,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 585(6)$, 453 (91), 341 (22), 321 (100), 227 (18), 199 (61), 132 (19), 90 (17).
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R, 11 E, 13 R$ )-9-(tert-Butyldimethylsiloxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-methylene11 -tetradecenolide (49). To a stirred suspension of methyltriphenylphosphonium bromide ( $40.0 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in dry toluene ( 1 mL ), at room temperature in a flask equipped with a reflux condenser, was added dropwise KHMDS solution ( $187 \mu \mathrm{~L}, 93.5 \mu \mathrm{~mol} ; 0.5 \mathrm{M}$ in toluene) whereupon the mixture rapidly became bright yellow, indicating formation of a phosphorus ylide. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h to ensure complete formation of the ylide, before being cooled to room temperature, and a solution of macrolide ketone 45 ( $6.0 \mathrm{mg}, 9.3 \mu \mathrm{~mol}$ ) in toluene ( $0.5 \mathrm{~mL}+0.5 \mathrm{~mL}$ washings) added via cannula. After heating at $90^{\circ} \mathrm{C}$ for 8 h , the reaction mixture was partitioned between distilled water ( 10 mL ) and diethyl ether ( $2 \times 20$ mL ). The combined organic extracts were washed with brine ( 15 mL ; saturated), dried ( $\mathrm{MgSO}_{4}$ ), and concentrated in vacuo; flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $3.8 \mathrm{mg}(80 \%)$ of alkene 49 as a colorless oil: TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.45 ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47(1 \mathrm{H}, \mathrm{br}$ d, $\left.J=8.5 \mathrm{~Hz}, H \mathrm{C}=\mathrm{CCH}_{3}\right), 5.31\left(1 \mathrm{H}\right.$, br s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}$, br s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.07(1 \mathrm{H}, \mathrm{qd}, J=6.5,1.8 \mathrm{~Hz}, \mathrm{HCOC}=0), 4.37$ $(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{TBS})$ ), $4.01(1 \mathrm{H}, \mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}$, $\left.\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.78-$ $2.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 2.00(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.78\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{CCH}_{3}\right), 1.65(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{3}$ ), $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.25(3 \mathrm{H}$, d, $\left.J=6.5 \mathrm{~Hz}, H_{3} \mathrm{CCHOC}=0\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{d}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.04$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.7,153.3,133.5$, $128.4,110.7,100.2,77.2,74.0,73.5,69.3,43.5,41.1,36.7,32.9,32.1$, 29.7, 25.9, 19.9, 18.2, 17.4, 16.0, 15.4, 13.5, 13.0, 7.6, -4.1, -5.0; MS (CI, $\mathrm{NH}_{3}$ ) m/z $509\left(2,[\mathrm{M}+\mathrm{H}]^{+}\right), 451$ (91), 413 (12), 393 (12), 337 (20), 319 (100), 279 (39), 263 (18), 199 (26), 163 (40), 149 (12), 91 (18).
(2S,4S,5S,6E)-1-(Benzyloxy)-5-hydroxy-2,4-dimethyl-6-octen-3one ( 7 ( $\boldsymbol{A} \boldsymbol{A})$ ). To a solution of cyclohexene ( $16.0 \mathrm{~mL}, 158 \mathrm{mmol}$ ) in diethyl ether ( 50 mL ) at room temperature was added dropwise by syringe monochloroborane-methyl sulfide complex ( $8.7 \mathrm{~mL}, 75 \mathrm{mmol}$ ). The mildly exothermic reaction was controlled by the rate of addition and the flask maintained at $20-25^{\circ} \mathrm{C}$ by immersion in a water bath. The reaction mixture was stirred for 2 h at room temperature, over which time it gradually became clear, before the solvent was removed
in vacuo (room temperature at $\sim 10 \mathrm{mmHg}$, vacuum line). Distillation under reduced pressure afforded pure ( Chx$)_{2} \mathrm{BCl}$ as a colorless oil (bp $80-90^{\circ} \mathrm{C}$ at $0.3 \mathrm{mmHg} ; d 0.981$ ). The chloroborane could be stored under argon at $-20^{\circ} \mathrm{C}$ for several months without significant loss of activity.

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of $(\mathrm{Chx})_{2} \mathrm{BCl}(5.00 \mathrm{~mL}, 23.0$ mmol) in diethyl ether ( 30 mL ) was added dropwise triethylamine ( 4.22 $\mathrm{mL}, 30.3 \mathrm{mmol}$ ) followed by addition via cannula of a solution of ketone ( $S$ )-8 ( $3.90 \mathrm{~g}, 18.9 \mathrm{mmol}$ ) in diethyl ether ( $10 \mathrm{~mL}+10 \mathrm{~mL}$ washings), whereupon a white precipitate formed instantaneously. Following 3 h of enolization at $-78^{\circ} \mathrm{C}$, freshly distilled crotonaldehyde ( $3.13 \mathrm{~mL}, 37.8 \mathrm{mmol}$ ) was added dropwise, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for a further 3 h , before being left in the freezer $\left(-20^{\circ} \mathrm{C}\right)$ for 16 h . The reaction mixture was then partitioned between diethyl ether ( $3 \times 200 \mathrm{~mL}$ ) and pH 7 buffer solution ( 200 mL ), and the combined organic extracts were concentrated in vacuo; the residue was resuspended in methanol ( 50 mL ) and pH 7 buffer ( 10 mL ) and cooled to $0{ }^{\circ} \mathrm{C}$. Hydrogen peroxide solution ( $20 \mathrm{~mL} ; 30 \%$ aqueous) was added dropwise and stirring continued at room temperature for $1-2 \mathrm{~h}$. The mixture was then poured into distilled water ( 200 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed in turn with sodium bicarbonate solution (150 $\mathrm{mL} ; 5 \%$ aqueous) and brine ( 150 mL ; saturated), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford a yellow oil. Flash chromatography ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided $4.86 \mathrm{~g}(93 \%)$ of the desired antianti aldol product $7(A A)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=+17.1^{\circ}$ (c 4.3, $\mathrm{CHCl}_{3}$ ); TLC ( $10 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.39$; IR (thin film) 3440 (br), 1700 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.25$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.71\left(1 \mathrm{H}, \mathrm{dqd}, J=15.3,6.4,0.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right)$, $5.43\left(1 \mathrm{H}, \mathrm{ddq}, J=15.3,7.7,1.6 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.49$ and 4.47 ( $2 \mathrm{H}, \mathrm{ABq}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $4.16(1 \mathrm{H}, \mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, \mathrm{CHOH}$ ), $3.67\left(1 \mathrm{H}\right.$, dd, $J=8.8,8.7 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J=8.8$, 5.0 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.07\left(1 \mathrm{H}, \mathrm{dqd}, J=8.7,7.0,5.0 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCHCH}_{2} \mathrm{OBn}\right), 2.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.75(1 \mathrm{H}, \mathrm{dq}, J=7.7,7.1 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHCHOH}\right), 1.70\left(3 \mathrm{H}\right.$, br d, $\left.J=6.4 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.05(3 \mathrm{H}$, d, $\left.J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 217.4,137.7,131.4,128.6,128.3,127.6,127.5,75.0$, $73.2,72.1,51.8,45.8,17.7,13.5,13.4$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$294.2069, found 294.2069; m/z 294 (70, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$), 259 (78), 224 (93), 207 (100), 108 (39), 91 (18).

The $(\mathrm{Chx})_{2} \mathrm{BCl}$-mediated asymmetric aldol reaction between ethyl ketone ( $S$ )-8 and crotonaldehyde was also performed on a smaller scale ( 113 mg of ketone, 0.55 mmol ), and the products were analyzed by HPLC ( $7 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): 131.2 mg of the desired anti-anti aldol product $7(A A)\left(H P L C ~ R_{t}=20 \mathrm{~min}\right)$ and 1.4 mg of the anti-syn aldol product $7(A S)$ (HPLC $R_{t}=17 \mathrm{~min}$ ) were isolated in a ratio of $99: 1$ and total yield of $87 \%$; $<1 \%$ syn aldol products was isolated.
(2S,3S,4S,5S,6E)-1-(Benzyloxy)-2,4-dimethyl-6-octene-3,5-diol. To a stirred solution of $\mathrm{Me}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}(11.0 \mathrm{~g}, 41.6 \mathrm{mmol})$ in dry acetonitrile ( 25 mL ) at room temperature was added glacial acetic acid ( 25 mL ), with resulting mild effervescence, and the reaction mixture was stirred for 1 h at room temperature before being cooled to -30 ${ }^{\circ} \mathrm{C}$. A solution of $\beta$-hydroxyketone 7 (AA) $(1.44 \mathrm{~g}, 5.19 \mathrm{mmol})$ in acetonitrile ( $12 \mathrm{~mL}+5 \mathrm{~mL}$ washings) was then added via cannula and the mixture stirred at $-30^{\circ} \mathrm{C}$ for 2.5 h , before being left in the freezer $\left(-20^{\circ} \mathrm{C}\right)$ for 48 h . The reaction was then quenched at $0^{\circ} \mathrm{C}$ by careful addition $\left({ }^{\uparrow} \mathrm{H}_{2}\right)$ of potassium sodium tartrate solution ( 75 mL ; 0.5 M aqueous), and vigorous stirring maintained for 1 h at room temperature. The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 100 mL ) and washed with sodium bicarbonate solution $(100 \mathrm{~mL}$; saturated, aqueous). The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 75 \mathrm{~mL})$. The combined organic extracts were then washed with more sodium bicarbonate solution ( $3 \times 75 \mathrm{~mL}$; saturated, aqueous), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ( $15 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) gave $1.34 \mathrm{~g}(92 \%)$ of the desired anti-1,3-diol as a colorless oil: $[\alpha]^{20} \mathrm{D}=+4.0^{\circ}\left(c 2.5, \mathrm{CHCl}_{3}\right)$; TLC ( $15 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.30$; IR (thin film) 3420 (br), $1660(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.25(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 5.72\left(1 \mathrm{H}, \mathrm{dqd}, J=15.3,6.5,1.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.56(1 \mathrm{H}$, ddq, $\left.J=15.3,6.6,1.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.54$ and $4.52(2 \mathrm{H}, \mathrm{ABq}, J$ $\left.=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J=6.6,6.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOH}\right)$, $3.91\left(1 \mathrm{H}, \mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}, \mathrm{CHOH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J=$
$9.0,4.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.39(2 \mathrm{H}$, br s, $2 \times \mathrm{OH}), 2.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right)$, $1.73\left(3 \mathrm{H}, \mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CHC}=\mathrm{CH}\right), 1.62(1 \mathrm{H}$, qdd, $J=7.0$, $\left.6.0,2.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOH})_{2}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.75$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5$, $133.5,128.5,127.8,127.7,126.7,76.8,76.3,76.1,73.5,39.4,35.8$, 17.8, 12.9, 9.8; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 279.1960, found 279.1960; m/z $296\left(5,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 279(40,[\mathrm{M}+$ $\mathrm{H}^{+}$), 261 (38), 243 (20), 196 (100), 178 (16), 99 (15).
(2E,4S,5S,6S,7S)-8-(Benzyloxy)-4,6-(R)-(ethylidenedioxy)-5,7-dim-ethyl-2-octene (56). To a solution of the diol prepared above $(1.34 \mathrm{~g}$, 4.80 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and 1,1-dimethoxyethane ( 50 mL ) at room temperature was added $p$ - TsOH ( $179.5 \mathrm{mg}, 0.94 \mathrm{mmol}$ ). After 70 h of stirring the reaction mixture was partitioned between sodium bicarbonate solution ( 150 mL ; saturated, aqueous) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $3 \times$ $250 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $20 \%$ diethyl ether/ hexanes) provided $1.36 \mathrm{~g}(93 \%)$ of the desired acetal product 56 as a colorless oil: $[\alpha]^{20} \mathrm{D}=-75.1^{\circ}\left(c 8.0, \mathrm{CHCl}_{3}\right)$; TLC ( $20 \%$ diethyl ether/ hexanes) $R_{f}=0.35$; IR ( $\mathrm{CCl}_{4}$ solution) $1670(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.76(1 \mathrm{H}, \mathrm{ddq}, J=15.6$, $\left.5.4,1.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.67\left(1 \mathrm{H}, \mathrm{dqd}, J=15.6,6.2,1.5 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\mathrm{CCH}=\mathrm{CH}), 4.93\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J=$ 12.3 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOCHCH}_{3}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J=10.3,2.1$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.54(1 \mathrm{H}$, dd, $J=8.8,3.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,6.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 1.90-1.80$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH} \mathrm{CBBn}_{2}\right), 1.75\left(3 \mathrm{H}\right.$, br d, $\left.J=6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right)$, $1.60\left(1 \mathrm{H}\right.$, qdd, $\left.J=6.9,2.1,1.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 1.23(3 \mathrm{H}$, $\left.\mathrm{d}, J=5.0 \mathrm{~Hz}, H_{3} \mathrm{CCHO}_{2}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, H_{3} \mathrm{CCH}-\right.$ $\left.\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right)$; NOE difference experiment ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) irradiation at 4.93 gave enhancements at $\delta(\%) 5.76$ and 5.67 (8.5), 3.66 (11.6), 1.23 (8.3); irradiation at 4.22 gave enhancements at $\delta(\%) 5.76$ and 5.67 (7.1), 1.60 (9.2). 1.13 (8.0); irradiation at 3.66 gave enhancements at $\delta(\%)$ 5.76 and 5.67 (7.6), 4.93 (12.9), 1.60 (5.4), 0.91 (2.4); ${ }^{13} \mathrm{C}$ NMR ( 100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.9,129.7,128.7,128.2,127.5,127.3,93.0,79.5$, $75.1,73.0,71.7,35.2,32.3,21.1,18.1,12.5,12.3$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 305.2117$, found 305.2120; m/z 305 (14, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 261(25), 196(100), 179$ (26), 136 (22), 108 (29), 99 (30), 91 (65), 82 (30).
(2S,3S,4S,5S,6E)-3,5-(R)-(Ethylidenedioxy)-2,4-dimethyl-6-octen-1-ol. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of alkene $56(1.35 \mathrm{~g}, 4.43$ mmol ) in THF ( 18 mL ) was added dropwise LiDBB solution ( $\sim 0.40$ M ) in portions ( 10 mL at a time), with a few minutes of stirring between each addition, until a green color persisted in the reaction mixture and TLC analysis indicated complete consumption of starting material. The green solution was then stirred for a further 30 min at $-78^{\circ} \mathrm{C}$, before being quenched by careful addition of ammonium chloride solution ( 150 mL ; saturated, aqueous), and the now colorless mixture extracted with diethyl ether $(3 \times 150 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: 0-40\% EtOAc/hexanes) gave recovered 4,4'-di-tertbutylbiphenyl crystals and $921 \mathrm{mg}(97 \%)$ of the desired alcohol as a colorless oil: $[\alpha]^{20} \mathrm{D}=-62.4^{\circ}$ (c $5.15, \mathrm{CHCl}_{3}$ ); TLC ( $40 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.35$; IR (thin film) 3420 (br), $1660(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.75-5.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 5.02(1 \mathrm{H}, \mathrm{q}$, $\left.J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOCHCH} 3\right), 3.70$ $\left(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J=$ $10.8,7.6 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, J=10.8,3.5 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.0(1 \mathrm{H}$, br s, OH$), 1.90-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OH}\right)$, $1.72-1.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.58(1 \mathrm{H}, \mathrm{qdd}, J=7.0,2.0,1.2 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOCHCH})_{2}\right), 1.24\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.14$ ( $3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH} 3$ ), $0.72\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 129.3,129.0,92.8,80.2,79.3,68.2,36.2,32.5$, 21.1, 18.0, 12.4, 11.8; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}([\mathrm{M}+$ $\left.\mathrm{H}]^{+}\right)$215.1647, found 215.1647; m/z $215\left(28,[\mathrm{M}+\mathrm{H}]^{+}\right), 171$ (68), 153 (42), 106 (100), 100 (40), 88 (40), 82 (33), 44 (32).
( $2 R, 3 R, 4 S, 5 S, 6 E)$-3,5-( $R$ )-(Ethylidenedioxy)-2,4-dimethyl-6-octenal (58). To a cooled ( $-78^{\circ} \mathrm{C}$ ), stirred solution of freshly distilled oxalyl chloride ( $0.83 \mathrm{~mL}, 9.52 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was added dropwise DMSO ( $1.35 \mathrm{~mL}, 19.0 \mathrm{mmol}$ ), and the mixture was
stirred for 15 min to ensure complete formation of the chlorosulfur complex. The alcohol prepared above ( $817 \mathrm{mg}, 3.81 \mathrm{mmol}$ ) was added in solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $40 \mathrm{~mL}+10 \mathrm{~mL}$ washings) via cannula and the reaction mixture stirred for a further 1 h at $-78^{\circ} \mathrm{C}$. Triethylamine ( $4.00 \mathrm{~mL}, 29.0 \mathrm{mmol}$ ) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture allowed to warm to $-23^{\circ} \mathrm{C}$ only until no alcohol was evident by TLC (ca. 30 min ). The reaction was immediately quenched by addition of ammonium chloride solution ( 100 mL ; saturated, aqueous), the layers were separated, and the aqueous phase was extracted with hexane (3 $\times 100 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $5 \%$ diethyl ether $/ \mathrm{CH}_{2}$ $\mathrm{Cl}_{2}$ ) afforded $709 \mathrm{mg}(87 \%)$ of the desired aldehyde 58 as a colorless oil: $[\alpha]^{20} \mathrm{D}=-118.8^{\circ}\left(c 4.4, \mathrm{CHCl}_{3}\right)$; TLC ( $5 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.42$; IR (thin film) 1720 (s), 1660 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.73(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{CHO}), 5.75-5.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}-\right.$ $\mathrm{CCH}=\mathrm{C} H), 5.01\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}-\right.$ $\mathrm{CCH}=\mathrm{CHCHOCHCH} 3), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.2 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 2.51(1 \mathrm{H}$, dqd, $J=10.5,7.1,2.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHCHO}\right), 1.73\left(3 \mathrm{H}\right.$, br d, $\left.J=6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.58(1 \mathrm{H}$, qdd, $\left.J=7.0,2.2,1.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 1.22(3 \mathrm{H}, \mathrm{d}, J=$ $\left.5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOCHCH})_{2}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHO}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 204.7,129.2$ (2C), $92.9,79.1,75.2,47.3,31.9,21.0,18.0,12.2,8.9$; $\mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$not found; $m / z 246(50), 202(100), 185$ (68), 169 (77), 151 (94), 123 (55), 111 (34).
(2R,3S,4S,5S,6S,7E)-4,6-(R)-(Ethylidenedioxy)-3,5-dimethyl-7-nonen-2-ol (59). To a cooled $\left(-100^{\circ} \mathrm{C}\right)$ stirred solution of aldehyde 58 ( $309 \mathrm{mg}, 1.46 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added dropwise by syringe a THF solution of methylmagnesium chloride ( $1.60 \mathrm{~mL}, 4.80$ $\mathrm{mmol} ; 3.0 \mathrm{M}$ in THF). The reaction mixture was stirred for 15 min , then quenched by dropwise addition of ammonium chloride solution ( 50 mL ; satuated, aqueous), and poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 25 mL ) and distilled water ( 25 mL ). The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$; the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. HPLC ( $25 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided 279 mg of the desired $13 R$ product epimer 59 and 18.0 mg of the $13 S$ product epimer 13-epi-59 as colorless oils in a total yield of $89 \%$. Data for major diastereomer 59: $[\alpha]^{20}{ }_{D}=$ $-66.5^{\circ}$ ( c 4.3, $\mathrm{CHCl}_{3}$ ); TLC ( $15 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.33$; HPLC ( $25 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{t}=17.5 \mathrm{~min}$; IR (thin film) 3450 (br), $1660(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.80-5.60(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{C} H\right), 5.02\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO} \mathrm{O}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOCHCH} 3\right), 3.91\left(1 \mathrm{H}, \mathrm{qd}, J=6.5,2.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOH}\right)$, $3.85\left(1 \mathrm{H}, \mathrm{dd}, J=10.4,2.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 2.55(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 1.85\left(1 \mathrm{H}, \mathrm{dqd}, J=10.4,7.1,2.3 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHOH}\right), 1.73$ $\left(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.55(1 \mathrm{H}$, qdd, $J=7.0,2.1,1.2$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCH}(\mathrm{CHOCHCH})_{2}\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.15$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, H_{3} \mathrm{CCHOH}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, H_{3} \mathrm{CCH}-\right.$ $\left.(\mathrm{CHOCHCH})_{2}\right), 0.71\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHOH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.4,129.0,92.7,79.5,76.0,69.3,39.1,32.4$, $21.2,18.9,18.0,12.4,10.3$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3}$ ([M $\left.+\mathrm{H}]^{+}\right) 229.1804$, found 229.1804; $m / z 229\left(65,[\mathrm{M}+\mathrm{H}]^{+}\right), 211(100)$, 185 (78), 167 (83), $120(100), 102$ (45), 82 (40). Data for minor diastereomer ( $2 S, 3 S, 4 S, 5 S, 6 S, 7 E$ )-4,6-( $R$ )-(ethylidenedioxy)-3,5-dim-ethyl-7-nonen-2-ol (13-epi-59): see supplementary material.
( $2 E, 4 S, 5 S, 6 S, 7 S, 8 R$ )-4,6-(R)-(Ethylidenedioxy)-8-[ $p$-methoxyben-zyl)oxy]-5,7-dimethyl-2-nonene. An argon-flushed flask was charged with potassium hydride ( $438 \mathrm{mg}, \sim 8.3 \mathrm{mmol} ; \sim 35 \%$ dispersion in oil). Hexane ( 10 mL ) was added, the mixture stirred vigorously for 5 min and then allowed to stand, and the supernatant removed by syringe without allowing the potassium hydride to become dry; this procedure was repeated twice with hexane and once with THF. Finally, THF (5 mL ) was added and the resulting suspension cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol 59 ( $93.1 \mathrm{mg}, 0.41 \mathrm{mmol}$ ) in dry THF ( $3 \mathrm{~mL}+1 \mathrm{~mL}$ washings) was added via cannula, the mixture stirred vigorously for 5 min, and $p$-methoxybenzyl chloride ( $190 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$ ) then added. The reaction mixture was allowed to warm to room temperature and stirred for 1.5 h before being recooled to $0^{\circ} \mathrm{C}$. Methanol ( 1 mL ) was added carefully, followed, some minutes later, by addition of aminonium chloride solution ( 5 mL ; saturated, aqueous). The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and ammonium chloride ( 50 mL ; saturated, aqueous), the layers were separated, and the aqueous phase
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: $0-2 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided $138 \mathrm{mg}(97 \%)$ of the desired $p$-methoxybenzyl ether as a colorless oil: $[\alpha]^{20} \mathrm{D}=-82.0^{\circ}\left(c 2.2, \mathrm{CHCl}_{3}\right)$; TLC ( $2 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.17$; IR (thin film) $1660(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.24(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H)$, $5.75-5.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CH}\right), 4.63\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right)$, $4.54\left(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.26(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}$, one of $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOCHCH} 3\right), 3.90(1 \mathrm{H}$, qd, $\left.J=6.4,1.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}(\mathrm{PMB})\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.72$ $\left(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 1.78(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.=6.2 \mathrm{~Hz}, H_{3} \mathrm{CCH}=\mathrm{CH}\right), 1.56\left(1 \mathrm{H}\right.$, qdd, $J=6.9,2.1,1.2 \mathrm{~Hz}, \mathrm{H}_{3}-$ $\left.\mathrm{CCH}\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 1.43\left(1 \mathrm{H}, \mathrm{dqd}, J=10.2,7.1,1.8 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ $\mathrm{CCHCHO}(\mathrm{PMB})), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, H_{3} \mathrm{CCHO}(\mathrm{PMB})\right), 1.13$ $\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, H_{3} \mathrm{CCHO}_{2}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, H_{3} \mathrm{CCH}-\right.$ $\left.\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 0.77\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHO}(\mathrm{PMB})\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.0,131.4,129.8,129.5,128.5,113.5$, $92.9,79.5,74.5,70.5,70.3,55.2,40.2,32.3,21.1,18.1,17.0,12.1$, 7.1; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 349.2379$, found $349.2379 ; \mathrm{m} / \mathrm{z} 349\left(8,[\mathrm{M}+\mathrm{H}]^{+}\right), 211$ (34), 197 (35), 121 (100).
(2R,3R,4S,5S,6R)-2,4-(S)-(Ethylidenedioxy)-6-[(p-methoxybenzyl)-oxy]-3,5-dimethylheptanal (60). To a stirred solution of the $p$ methoxybenzyl ether prepared above ( $72.4 \mathrm{mg}, 208 \mu \mathrm{~mol}$ ) and $N$-methylmorpholine $N$-oxide ( $51.4 \mathrm{mg}, 424 \mu \mathrm{~mol}$ ) in tert-butyl alcohol/ THF/water ( $2 \mathrm{~mL} ; 10: 3: 1$ ) at room temperature was added an aqueous solution of osmium tetraoxide ( $31.0 \mu \mathrm{~L}, 3.10 \mu \mathrm{~mol} ; \sim 0.1 \mathrm{M}$ ), whereupon a pale yellow solution resulted. After stirring for $15 \mathrm{~h}, \mathrm{pH}$ 7 buffer solution ( 2 mL ) and solid sodium periodate ( $222 \mathrm{mg}, 1.04$ mmol ) were added, resulting in fast precipitation of a white solid. Vigorous stirring was continued for a further 25 min , and then sodium sulfite solution ( 6 mL ; saturated, aqueous) was added. After 5 min the mixture was partitioned between sodium sulfite solution ( 50 mL ; saturated, aqueous) and hexanes ( 50 mL ), the layers were separated, and the aqueous phase was extracted with hexanes $(4 \times 25 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $30 \%$ diethyl ether/hexanes) afforded $63.6 \mathrm{mg}(91 \%)$ of the desired aldehyde 60 as a colorless oil: $[\alpha]^{20}{ }_{D}=$ $-118.5^{\circ}$ ( c 3.2, $\mathrm{CHCl}_{3}$ ); TLC ( $30 \%$ diethyl ether/hexanes) $R_{f}=0.15$; IR ( $\mathrm{CHCl}_{3}$ solution) $1730(\mathrm{~s}) ; \mathrm{cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 6.84(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{Ar} H), 4.49\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.45(1 \mathrm{H}$, $\left.\mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.17\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{ArCH}_{2} \mathrm{O}\right)$, $4.02\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCHOCHCH} 3\right), 3.80(1 \mathrm{H}, \mathrm{qd}, J=6.4,1.8$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCHO}(\mathrm{PMB})\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J=10.1$, $\left.2.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHOCH}\left(\mathrm{CHCH}_{3}\right)_{2}\right), 2.20-2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCH}-\right.$ $\left.\left(\mathrm{CHOCHCH}_{3}\right)_{2}\right), 1.40\left(1 \mathrm{H}, \mathrm{dqd}, J=10.1,7.0,1.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCHO}-\right.$ (PMB)), $1.19\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, H_{3} \mathrm{CCHO}_{2}\right), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHO}(\mathrm{PMB})\right), 1.09\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} H_{3}\right), 0.78(3 \mathrm{H}, \mathrm{d}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.0,159.0,131.2,129.6$, $113.5,96.9,85.0,76.7,70.0,69.8,55.2,40.1,28.9,21.0,16.8,11.2$, 7.0; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{5}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 354.2280$, found $354.2280 ; m / z 354\left(15,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 337\left(85,[\mathrm{M}+\mathrm{H}]^{+}\right), 309$ (50), 295 (20), 280 (95\%), 263 (100), 121 (100).
(2S,4R,5R)-1-(Benzyloxy)-5-hydroxy-2,4,6-trimethyl-6-hepten-3one ( 6 (SS)). Anhydrous tin(II) chloride ( $1.23 \mathrm{~g}, 6.49 \mathrm{mmol}$ ) was placed in a tared flask under argon by means of a glovebag and weighed accurately. Triflic acid ( 10.0 mL ) was added and the mixture heated to $80-85^{\circ} \mathrm{C}$ for 24 h . The resulting precipitate of $\mathrm{Sn}(\mathrm{OTf})_{2}$ was filtered under argon, washed with dry diethyl ether ( $10 \times 10 \mathrm{~mL}$ ), and then dried in vacuo $(\sim 0.1 \mathrm{mmHg})$ for 12 h , yielding a white solid $(\sim 1.5 \mathrm{~g}$, 80\%).
$\mathrm{Sn}(\mathrm{OTf})_{2}(734 \mathrm{mg}, 1.76 \mathrm{mmol})$ was placed in a tared flask under argon by means of a glovebag and weighed accurately. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL ) was added and the resulting suspension stirred at room temperature while triethylamine ( $300 \mu \mathrm{~L}, 2.15 \mathrm{mmol}$ ) was added, whereupon a pale yellow color developed. The mixture was cooled immediately to -78 ${ }^{\circ} \mathrm{C}$ and a solution of ketone $(S)-8(277 \mathrm{mg}, 1.34 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $2 \mathrm{~mL}+1 \mathrm{~mL}$ washings) added via cannula. After 2 h of enolization at $-78{ }^{\circ} \mathrm{C}$, a solution of freshly distilled methacrolein ( $250 \mu \mathrm{~L}, 3.00$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added via cannula and the reaction mixture stirred for a further 1 h , before being quenched by pouring
into pH 7 buffer solution ( 125 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ 100 mL ). The combined organic extracts were washed with pH 7 buffer solution ( $2 \times 100 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ( $15 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) followed by HPLC ( $33 \%$ diethyl ether/hexanes) afforded 310 mg of the desired syn-syn aldol product $6(S S), 21.4 \mathrm{mg}$ of the syn-anti aldol product $6(S A)$, and 5.3 mg of an anti aldol diastereomer, as colorless oils in a total yield of $90 \%$. The major diastereomer 6 (SS) and minor diastereomer $6(S A)$ had spectral data identical to those of material prepared by the $(+)$-(Ipc) $)_{2}$ BOTf-mediated aldol reaction of ketone $(S)-8$ and methacrolein (vide supra).
(2S,3R,4S,5R,6R)-O-Benzy1-3,5-(isopropylidenedioxy)-2,4,6-trim-ethyl-7-(phenylthio)heptan-1-ol. To a stirred solution of thiophenol ( $0.16 \mathrm{~mL}, 1.56 \mathrm{mmol}$ ) in THF ( 2 mL ) at room temperature was added dropwise $n$-butyllithium solution ( $0.93 \mathrm{~mL}, 1.35 \mathrm{mmol} ; 1.45 \mathrm{M}$ in hexanes) to give a colorless solution of lithium thiophenolate which was used immediately (total volume $3.0 \mathrm{~mL} ; \sim 0.45 \mathrm{M}$ ).

To a stirred solution of $p$-toluenesulfonate 34 ( $131 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) in dry THF ( 3 mL ), at room temperature in a flask equipped with a reflux condenser, was added via cannula THF solution of lithium thiophenolate ( $3.00 \mathrm{~mL}, 1.35 \mathrm{mmol} ; \sim 0.45 \mathrm{M}$ ). The colorless reaction mixture was heated under reflux for 3.5 h and then partitioned between sodium hydroxide solution ( $50 \mathrm{~mL} ; 10 \%$ aqueous) and diethyl ether ( 3 $\times 50 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: 0-3\% diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided $114 \mathrm{mg}(99 \%)$ of the desired sulfide as a colorless oil: $[\alpha]^{20}{ }_{D}=-13.9^{\circ}\left(c 5.6, \mathrm{CHCl}_{3}\right)$; TLC ( $3 \%$ diethyl ether/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.55 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.25(9 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{Ar} H$ and $\mathrm{SArH} o-H$ and $\left.m-H\right), 7.15-7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{SArH} p-H)$, $4.54\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.65\left(1 \mathrm{H}\right.$, dd, $\left.J=9.6,1.9 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.59$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.9,2.0 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.42(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.6$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.36\left(2 \mathrm{H}, \mathrm{d}, J=4.65 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 2.72(1 \mathrm{H}$, dd $J=12.8,8.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 2.00-1.85\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right)$, $1.57\left(1 \mathrm{H}\right.$, qdd $\left.J=6.8,2.0,1.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.42(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.93\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH} 3) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 138.4,137.9,128.7,128.3,127.8,127.5$ (two C), 125.0, 99.0, 76.3, 76.0, 73.1, 71.5, 37.0, 35.0, 34.9, 31.1, 29.9, $19.6,14.8,14.0,5.0 ; \mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$ 428.2385, found 428.2385; m/z $429\left([\mathrm{M}+\mathrm{H}]^{+}, 13\right), 428\left(27, \mathrm{M}^{+}\right)$, 371 (100), 353 (52), 263 (59), 91 (25).
(SRS,2S,3R,4S,5R,6R)-O-Benzyl-3,5-(isopropylidenedioxy)-2,4,6-trimethyl-7-(phenylsulfinyl)heptan-1-ol (64). To a stirred solution of the sulfide prepared above ( $359 \mathrm{mg}, 0.84 \mathrm{mmol}$ ) in methanol ( 12 mL ) at room temperature were added sodium periodate ( $213 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and distilled water $(1.5 \mathrm{~mL})$, and the reaction mixture was left stirring for 24 h . It was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100$ $\mathrm{mL})$ and distilled water ( 100 mL ). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Elution with diethyl ether through a short column of silica gel gave 362 mg ( $97 \%$ ) of two diastereomeric sulfoxides 64 in a $2: 3$ ratio, as a colorless viscous oil. HPLC ( $80 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) provided a sample of each diastereomer for analysis, but in general, the unseparated mixture was used in synthetic reactions. Data for the major epimer: TLC (diethyl ether) $R_{f}=0.40$; HPLC ( $80 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{t}=28.0 \mathrm{~min}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(2 \mathrm{H}, \mathrm{dd}, \mathrm{m}, \mathrm{S}(\mathrm{O}) \mathrm{Ar} H \quad o-H), 7.51-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{S}(\mathrm{O})-$ $\mathrm{Ar} H m-H$ and $p-H), 7.35-7.25\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ar} H\right), 4.49(1 \mathrm{H}, \mathrm{d}, J=$ 12.2 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.58\left(1 \mathrm{H}, \mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J=9.9$, $\left.2.1 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.32\left(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 2.96(1 \mathrm{H}$, $\mathrm{dd}, J=13.2,4.6 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.66(1 \mathrm{H}, \mathrm{dd}, J=13.2,7.4$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH} \mathrm{S}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 1.85(1 \mathrm{H}$, dqt, $\left.J=9.6,6.7,4.6 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{OBn}\right), 1.56(1 \mathrm{H}, \mathrm{qdd}, \mathrm{J}=6.8$, $\left.2.1,2.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.78\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100.6 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 145.3,138.4,130.8,129.2,128.3,127.5$ (two C), 124.0, 99.1, $77.3,75.9,73.2,71.4,63.0,34.9,32.1,30.7,29.9,19.7,15.0,14.8$, 4.8; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 445.2413$, found 445.2413; m/z 445 (100, $[\mathrm{M}+\mathrm{H}]^{+}$), 387 (60), 217 (93), 108 (37), 91 (48). Data for the minor epimer: TLC (diethyl ether) $R_{f}=0.35$; HPLC
( $80 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{\mathrm{t}}=36.0 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.67-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{S}(\mathrm{O}) \mathrm{Ar} H$ o-H), $7.52-7.46$ (3H, m, S(O)ArH m-H and $p-H), 7.35-7.25\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ar} H\right), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.61(1 \mathrm{H}$, dd, $\left.J=9.6,1.9 \mathrm{~Hz}, \mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J=9.9,2.1 \mathrm{~Hz}$, $\left.\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J=13.0,4.4$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.48(1 \mathrm{H}$, dd, $J=13.0,8.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CCHCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{Ph}\right), 1.86(1 \mathrm{H}$, dqt, $J=$ $9.6,6.7,4.9 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHCH} 2 \mathrm{OBn}$ ), 1.56 ( 1 H, qdd, $\mathrm{J}=6.8,2.1,1.9$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CCH}\left(\mathrm{CHOC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.77\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.6,138.4,130.7,129.1,128.3,127.5$ (2C), 124.2, 99.1, 76.8, 75.9, $73.2,71.4,63.3,35.0,31.1,30.9,29.9,19.6,14.7$ (2C), 5.0.
( $\mathbf{2 R}, \mathbf{3 S}, 4 R, 5 S, 6 S, 8 R S, 9 R, 10 R, 11 S, 12 S, 13 R)-9,11-(S)$-(Ethylidene-dioxy)-8-hydroxy-3,5-(isopropylidenedioxy)-13-[(p-methoxybenzyl)-oxy]-2,4,6,10,12-pentamethyltetradecan-1-ol (66). To a cooled ( -20 ${ }^{\circ} \mathrm{C}$ ) stirred solution of diethylamine ( $89.0 \mu \mathrm{~L}, 0.86 \mathrm{mmol}$ ) in THF ( 2 mL ) was added dropwise $n$-butyllithium solution ( $0.54 \mathrm{~mL}, 0.84 \mathrm{mmol}$; 1.56 M in hexanes). The resulting colorless solution was stirred at this temperature for 15 min , before being cooled to $-78^{\circ} \mathrm{C}$. A solution of sulfoxide 64 ( $350 \mathrm{mg}, 0.79 \mathrm{mmol}$ ) in THF ( 5 mL ) was then added dropwise via cannula and the mixture stirred at this temperature for 15 min before dropwise addition via cannula of a solution of aldehyde 60 ( $170 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in THF ( $4 \mathrm{~mL}+2 \mathrm{~mL}$ washings). After 30 min the reaction mixture was quenched by addition of ammonium chloride solution ( 30 mL ; saturated, aqueous) and allowed to warm to room temperature before being extracted with ethyl acetate $(4 \times 30 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography (gradient elution: $20-50 \% \mathrm{EtOAc} /$ hexanes) followed by HPLC ( $40 \%$ EtOAc/hexanes) provided 412 mg of the crude product 65 as a mixture of stereoisomers and 100 mg of recovered sulfoxides 64.

To a vigorously stirred solution of the mixture of adducts prepared above in diethyl ether ( 30 mL ) under an argon atmosphere at room temperature was added a slurry of W-2 Raney nickel in ethanol (approximately 3 g of catalyst). ${ }^{82}$ The mixture was stirred at room temperature for 3 h before removal of the Raney nickel by elution through a short column of Celite with ethanol, taking care that the Raney nickel was not allowed to become dry, and the solvent removed in vacuo to give a yellow oil. The oil was then dissolved in ethanol ( 30 mL ), fresh Raney nickel (approximately 3 g of catalyst) added, and the mixture stirred vigorously under a hydrogen atmosphere overnight. The Raney nickel was then removed by elution through a short column of Celite with ethanol, again taking care that the Raney nickel was not allowed to become dry, and the solvent removed in vacuo. Flash chromatography ( $50 \%$ EtOAc/hexanes) provided 171 mg ( $60 \%$ over three steps from 60) of the desired epimeric diols 66. HPLC (60\% $\mathrm{EtOAc} / \mathrm{hexanes}$ ) of an analytical sample provided samples of the two $\mathrm{C}_{8}$ epimers for characterization. Data for the major epimer: $[\alpha]^{20}=$ $-30.1^{\circ}\left(c 2.2, \mathrm{CHCl}_{3}\right)$; TLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.29$; IR (thin film) $3420(\mathrm{br}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.0$ Hz , one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.37\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.24(1 \mathrm{H}, \mathrm{d}$, $J=12.0 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} H\right), 3.89(1 \mathrm{H}, \mathrm{qd}, J=$ $\left.6.4,1.6 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.73(1 \mathrm{H}, \mathrm{dd}, J=10.1,2.0$ $\left.\mathrm{Hz}, \mathrm{C}_{11} H\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J=9.4,1.7 \mathrm{~Hz}, \mathrm{C}_{5} H\right)$ ), $3.60(1 \mathrm{H}$, dd, $J=$ $10.8,3.9 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{1} H\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,5.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{1} H\right)$, $3.44\left(1 \mathrm{H}, \mathrm{dd}, J=9.6,1.7 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.18(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{C} 9 H)$, $2.00\left(1 \mathrm{H}, \mathrm{qd}, J=7.1,1.3 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 1.84-1.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} H, \mathrm{C}_{6} H\right)$, $1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right)$, $1.13\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C}_{14} H\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHO}_{2}\right)$, $1.05\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C}_{10} \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{CH}_{3}\right)$, $0.93\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{CH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{CH}_{3}\right)$, $0.79\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C}_{12} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.0,131.6,129.6,113.5,99.5,93.6,83.6,79.4,75.6,74.8,70.6,70.3$, $67.4,64.0,55.2,40.3,40.2,36.6,33.0,31.5,29.8,27.3,21.5,19.6$, $17.4,17.1,14.0,12.8,7.2,5.1 ;$ HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{9}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 567.3897$, found $567.3900 ; \mathrm{m} / \mathrm{z} 567\left(5,[\mathrm{M}+\mathrm{H}]^{+}\right), 509$ (10), 383 (10), 309 (10), 241 (25), 183 (15), 121 (100). Data for the minor epimer: $[\alpha]^{20} \mathrm{D}=-10.6^{\circ}$ (c $2.0, \mathrm{CHCl}_{3}$ ); TLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.25$; IR (thin film) 3415 (br) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.20(2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H)$, $4.66\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.24\left(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.18(1 \mathrm{H}$, ddd, $J=$ $\left.9.7,7.9,3.5 \mathrm{~Hz}, \mathrm{C}_{8} H\right), 3.88\left(1 \mathrm{H}, \mathrm{qd}, J=6.4,1.7 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 3.78(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.8.0,1.9 \mathrm{~Hz}, \mathrm{C}_{5} H\right)$ ), $3.59\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.9 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{1} H\right), 3.51$ ( $1 \mathrm{H}, \mathrm{dd}, J=10.8,5.3 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{1} H\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J=9.7,1.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{3} H\right), 3.29\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{9} H\right), 2.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.78(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{11} H\right), 1.62-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} H\right.$ and $\left.\mathrm{C}_{6} H\right), 1.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right), 1.35$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CHO}_{2}$ ), $1.12\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C}_{14} H\right), 1.06(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{10} \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\mathrm{C}_{6} \mathrm{CH}_{3}$ ), $0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{CH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, $\mathrm{C}_{12} \mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.1,131.4,129.4,113.6$, $98.9,93.4,84.2,78.8,75.7,75.2,70.2,67.0,64.1,55.3,40.1,39.4$, $36.7,31.8,30.0,28.4,21.2,19.6,17.0,16.5,14.0,12.9,7.2,5.1 ;$ HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{9}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 567.3897$, found 567.3900; $\mathrm{m} / \mathrm{z} 567$ (5, [M + H] ${ }^{+}$), 241 (15), 183 (10), 121 (100).
( $2 R, \mathbf{3 S}, \mathbf{4 R}, 5 S, 6 S, 9 R, 10 R, 11 S, 12 S, 13 R$ )-9,11-(S)-(Ethylidenedioxy)-3,5-(isopropylidenedioxy)-13-[ $p$-methoxybenzyl)oxy]-2,4,6,10,12-pentamethyl-8-oxotetradecanoic Acid (67). To a cooled ( $-78^{\circ} \mathrm{C}$ ) stirred solution of oxalyl chloride ( $0.48 \mathrm{~mL}, 0.96 \mathrm{mmol} ; 2.0 \mathrm{M}$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise DMSO ( $137 \mu \mathrm{~L}, 1.93$ mmol ), and the mixture was stirred for 10 min to ensure complete formation of the chlorosulfur complex. A solution of the mixture of diols $66(109 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}+3 \mathrm{~mL}$ washings) was then added via cannula and the reaction mixture stirred for a further 1 h at $-78{ }^{\circ} \mathrm{C}$. Triethylamine ( $0.40 \mathrm{~mL}, 2.89 \mathrm{mmol}$ ) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture allowed to warm to $-23^{\circ} \mathrm{C}$ only until no starting material was evident by TLC (ca. 45 min ). The reaction was quenched by addition of ammonium chloride solution ( 25 mL ; saturated, aqueous) and allowed to warm to room temperature before extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude mixture was triturated with pentane ( $3 \times 10 \mathrm{~mL}$ ) and then filtered through Celite to remove the solid residue ( $\mathrm{Et}_{3} \mathrm{NH}^{+} \mathrm{Cl}^{-}$); concentration of the filtrate in vacuo then gave the desired ketoaldehyde (TLC ( $50 \%$ EtOAc/hexanes) $R_{f}=0.65$ ). This was used immediately in the next reaction.

To a stirred solution of the ketoaldehyde from the above Swern reaction in tert-butyl alcohol ( 9 mL ) at room temperature was added 2-methyl-2-butene ( $170 \mu \mathrm{~L}$ ). A solution of sodium chlorite ( 254 mg , 2.79 mmol ) and sodium dihydrogen orthophosphate ( $339 \mathrm{mg}, 2.20$ mmol ) in distilled water ( 9 mL ) was added dropwise over 2 min . The reaction mixture was stirred for 30 min before diluting with brine ( 50 mL ; saturated) and extracting with diethyl ether ( $4 \times 30 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $1 \% \mathrm{AcOH} / 15 \%$ diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) followed by azeotropic removal of acetic acid with toluene on a rotary evaporator afforded 106 mg ( $96 \%$ over two steps) of the desired acid 67 as a viscous oil: $[\alpha]^{20} \mathrm{D}=-38.6^{\circ}\left(c 2.2, \mathrm{CHCl}_{3}\right)$; TLC $(1 \% \mathrm{AcOH} /$ $30 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.50$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$ solution) 1745 (s), 1712 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.17(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{Ar} H), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.29\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.19(1 \mathrm{H}, \mathrm{d}, J=$ 11.9 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.00\left(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{C}_{9} H\right), 3.84(1 \mathrm{H}, \mathrm{dd}$, $J=9.6,2.0 \mathrm{~Hz}, \alpha$ to O$), 3.81\left(1 \mathrm{H}, \mathrm{qd}, J=6.4,1.8 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 3.78$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, \alpha$ to O$), 3.37(1 \mathrm{H}$, dd, $J=10.2,2.1 \mathrm{~Hz}, \alpha$ to 0$), 2.86(1 \mathrm{H}, \mathrm{dd}, J=16.3,5.3 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} H_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{dq}, J=9.6,6.9 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.30-2.20(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CHCH}_{3}\right), 2.08\left(1 \mathrm{H}, \mathrm{dd}, J=16.3,7.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.65(1 \mathrm{H}, \mathrm{q}$, $\left.J=6.9,2.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.45-1.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.37(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.12\left(3 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.06$ ( $3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$ ), $0.88\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 210.5,179.2,158.9,131.3,129.5,113.5,99.3,96.5$, $85.1,77.3,76.5,74.8,70.1,70.0,55.2,43.2,41.8,40.1,31.2$ (2C), $27.9,21.0,19.5,16.9,15.5,14.8,14.1,11.5,7.1,4.9$; HRMS (FAB, NOBA) calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{9}\left([\mathrm{M}+\mathrm{H}]^{+} 579.3478\right.$, found $579.3490 ; \mathrm{m} / \mathrm{z}$ 579 (8, [M + H ${ }^{+}$), 339 (15), 269 (13), 237 (25), 171 (25), 149 (80), 125 (80), 109 (100).
( $2 R, 3 S, 4 R, 5 S, 6 S, 9 R, 10 R, 11 S, 12 S, 13 R$ )-9,11-(S)-(Ethylidenedioxy)-13-hydroxy-3,5-(isopropylidenedioxy)-2,4,6,10,12-pentamethyl-8-oxotetradecanoic Acid (68). To a solution of acid $67(106 \mathrm{mg}, 183$ $\mu \mathrm{mol}$ ) in ethanol ( 25 mL ) under an argon atmosphere was added palladium on activated charcoal (approximately $50 \mathrm{mg}, 10 \% \mathrm{Pd}$ content). The reaction mixture was stirred while hydrogen (from a hydrogen-filled double balloon) replaced the argon. After stirring for 18 h , the catalyst was removed by elution with ethanol through a short column of Celite. Concentration in vacuo afforded the crude product as a yellow oil. Flash chromatography ( $1 \% \mathrm{AcOH} / 25 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded 80.6 mg ( $97 \%$ ) of the desired seco-acid $\mathbf{6 8}$ as a colorless oil: $[\alpha]^{20} \mathrm{D}=-15.8^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right) ; \operatorname{TLC}(1 \% \mathrm{AcOH} / 30 \%$ diethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $R_{f}=0.20$; IR ( $\mathrm{CHCl}_{3}$ solution) $1743(\mathrm{~m}), 1710$ (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.70(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.06\left(1 \mathrm{H}, \mathrm{br}, \mathrm{C}_{9} H\right), 3.89\left(1 \mathrm{H}, \mathrm{qd}, J=6.6,2.2 \mathrm{~Hz}, \mathrm{C}_{13} H\right)$, $3.86(1 \mathrm{H}, \mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, \alpha$ to O$), 3.59(1 \mathrm{H}, \mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}$, $\alpha$ to 0$), 3.47(1 \mathrm{H}, \mathrm{dd}, J=9.8,2.0 \mathrm{~Hz}, \alpha$ to 0$), 2.88(1 \mathrm{H}, \mathrm{dd}, J=$ $16.3,5.4 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.30-$ $2.20\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 2.16(1 \mathrm{H}, \mathrm{dd}, J=16.3,6.7 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.90-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.70-1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.38$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}$ ) , $1.35\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.14(3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.76\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.6,178.8,99.3,96.4,84.9,78.0,77.3$, $74.8,69.7,43.3,41.9,39.0,31.3,31.1,29.7,27.7,21.3,19.5,18.7$, 15.5, 14.8, 11.7, 10.5, 4.9; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{24} \mathrm{H}_{4} \mathrm{O}_{8}$ ([M $+\mathrm{H}]^{+}$) 459.2958 , found $459.2958 ; \mathrm{m} / \mathrm{z} 459\left(15,[\mathrm{M}+\mathrm{H}]^{+}\right), 441$ (15), 415 (20), 401 (50), 383 (60), 357 (100), 339 (90), 321 (20), 171 (30), 125 (50).
(2R,3S,4R,5S,6S,9R,10R,11S,12S,13R)-9,11-(S)-(Ethylidenedioxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-oxotetradecanolide (69). To a stirred solution of seco-acid $68(80.0 \mathrm{mg}, 175$ $\mu \mathrm{mol})$ in THF ( 6 mL ) at room temperature was added triethylamine ( $28.0 \mu \mathrm{~L}, 201 \mu \mathrm{~mol}$ ) followed by $2,4,6$-trichlorobenzoyl chloride ( 29.0 $\mu \mathrm{L}, 183 \mu \mathrm{~mol})$. The reaction mixture was stirred for 2.5 h , during which time it became slightly cloudy. The mixture was then diluted with toluene to give a final volume of 40 mL .

To a heated $\left(60^{\circ} \mathrm{C}\right)$ solution of DMAP ( $172 \mathrm{mg}, 1.40 \mathrm{mmol}$ ) in toluene ( 60 mL ), in a flask equipped with a reflux condenser and septum inlet, was slowly added (over 2.5 h by syringe pump) the solution of the mixed anhydride prepared above. After addition, the reaction mixture was stirred for a further 30 min at $60^{\circ} \mathrm{C}$, before being cooled to room temperature and concentrated in vacuo. Flash chromatography ( $20 \%$ EtOAc/hexanes) afforded $59.4 \mathrm{mg}(78 \%$ ) of the desired macrolactone 69 as a colorless oil: $[\alpha]^{20}{ }_{D}=-46.8^{\circ}\left(c 2.7, \mathrm{CHCl}_{3}\right)$; TLC ( $40 \%$ EtOAc/hexanes) $R_{f}=0.50$; IR ( $\mathrm{CHCl}_{3}$ solution) 1719 (s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53\left(1 \mathrm{H}, \mathrm{qd}, J=6.7,1.0 \mathrm{~Hz}, \mathrm{C}_{13} H\right)$, $4.95\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.34(1 \mathrm{H}$, br d, $\alpha$ to O$), 4.15$ ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}, ~ H$ ) , $3.66(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.5 \mathrm{~Hz}, \alpha$ to O ), $3.10(1 \mathrm{H}, \mathrm{dd}$, $J=9.8,1.6 \mathrm{~Hz}, \alpha$ to O$), 2.62\left(1 \mathrm{H}, \mathrm{dq}, J=10.7,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.70-$ $2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.31(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.25-2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.55(1 \mathrm{H}, \mathrm{dqd}, J=9.7,7.2,1.1$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.35$ ( $3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}$ ), $1.30-1.25$ ( 1 H , buried m, $\mathrm{CHCH}_{3}$ ), $1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J \approx 8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.97(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.6,174.7,100.4,97.0,84.8,77.2,76.8,71.4,69.2$, 41.7, 41.4, 39.9, 32.7, 32.2, 30.6, 20.9, 20.0, 18.3, 14.9, 14.1, 13.4, 11.5, 7.6, 7.2; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 441.2852, found 441.2852; $m / z 441(5,[\mathrm{M}+\mathrm{H}]+$ ), $400(21), 383$ ( 100 ), 365 (15), 339 (42), 321 (15), 125 (10).

## ( $\mathbf{2 R}, \mathbf{3 S}, \mathbf{4 R}, 5 S, 6 S, 9 R, 10 R, 11 S, 12 S, 13 R$ )-9,11-(S)-(Ethylidenedioxy)-

 3,5-(isopropylidenedioxy)-2,4,6,10,12,13-hexamethyl-8-methylenetetradecanolide (74). To a suspension of methyltriphenylphosphonium bromide ( $415 \mathrm{mg}, 1.16 \mathrm{mmol}$ ) in toluene ( 2 mL ) was added potassium hexamethyldisilazide solution ( $2.18 \mathrm{~mL}, 1.09 \mathrm{mmol} ; \sim 0.5 \mathrm{M}$ in toluene), and the mixture was heated to $60^{\circ} \mathrm{C}$ for 30 min to ensure complete ylide formation. After cooling to room temperature, a solution of ketone $69(32.0 \mathrm{mg}, 72.6 \mu \mathrm{~mol})$ in toluene ( $1 \mathrm{~mL}+0.5 \mathrm{~mL}$ washings) was added via cannula and the mixture again heated to refluxfor 1 h . After cooling to room temperature, the reaction was quenched by addition of saturated ammonium chloride solution $(15 \mathrm{~mL})$ followed by extraction with diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $10 \% \mathrm{EtOAc} /$ hexanes) afforded 29.3 mg ( $92 \%$ ) of the desired exocyclic alkene 74 as a colorless oil: $[\alpha]^{20}{ }_{D}=-10.2^{\circ}$ (c 1.3, $\left.\mathrm{CHCl}_{3}\right)$; TLC ( $30 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.57$; IR $\left(\mathrm{CHCl}_{3}\right.$ solution) 1718 (s), $1647(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.56(1 \mathrm{H}, \mathrm{qd}$, $\left.J=6.7,1.0 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 5.33\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}$, br s , one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.99\left(1 \mathrm{H}, \mathrm{q}, J=5.1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.21(1 \mathrm{H}, \mathrm{dd}$, $J=6.7,1.7 \mathrm{~Hz}, \alpha$ to O$), 4.19(1 \mathrm{H}$, br s, C $9 H), 3.63(1 \mathrm{H}, \mathrm{dd}, J=10.7$, $1.5 \mathrm{~Hz}, \alpha$ to O ), $3.23(1 \mathrm{H}, \mathrm{dd}, J=9.9,1.6 \mathrm{~Hz}, \alpha$ to O$), 2.65(1 \mathrm{H}, \mathrm{dq}$, $\left.J=10.7,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.55-2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.99(1 \mathrm{H}, \mathrm{qt}, J$ $\left.=6.7,1.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.95\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.84(1 \mathrm{H}, \mathrm{dd}, J=$ $18.2,11.4 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.60-1.50\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 1.43$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.33(3 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}$, $\left.H_{3} \mathrm{CCHO}_{2}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.99\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 174.8,141.7,111.8,100.3,94.4,81.1$, $77.4,75.6,71.8,69.4,41.4,40.0,33.9,32.0,31.9,29.7,29.0,20.9$, $19.9,18.5,16.1,13.3,11.9,7.6,7.1$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 439.3060$, found 439.3060; m/z $439(5,[\mathrm{M}+$ $\mathrm{H}^{+}$), 381 (73), 339 (100), 337 (100), 319 (36), 149 (100).
( $\mathbf{2 R}, \mathbf{3 S}, 4 R, 5 S, 6 S, 8 S 9 R, 10 R, 11 S, 12 S, 13 R$ )-8,8-(Epoxymethano)-9,11 -(S)-(ethylidenedioxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13hexamethyltetradecanolide (81). To a solution of alkene 74 (10.0 $\mathrm{mg}, 22.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $m$-chloroperbenzoic acid ( $24.0 \mathrm{mg}, 0.137 \mathrm{mmol} ; \sim 99 \%$ purity ${ }^{81}$ ), and the reaction mixture was stirred at room temperature for 18 h . A solution of sodium thiosulfate ( 0.50 g ) in sodium bicarbonate solution ( 15 mL , saturated, aqueous) was then added and the mixture stirred at room temperature for 1 h . The mixture was then separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $20 \%$ $\mathrm{EtOAc} / \mathrm{hexanes}$ ) afforded $6.2 \mathrm{mg}(60 \%)$ of the desired epoxide 81 as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-6.6^{\circ}$ (c 2.1, $\mathrm{CHCl}_{3}$ ); TLC ( $20 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.39$; IR ( $\mathrm{CHCl}_{3}$ solution) 1727 (s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.55\left(1 \mathrm{H}, \mathrm{q}, J=6.6, \mathrm{C}_{13} H\right), 4.64(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 3.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 9 H, \mathrm{C}_{11} H\right), 3.64\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{C}_{3} H\right)$, $3.31\left(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 2.96\left(2 \mathrm{H}, \mathrm{ABq}, J=5.0 \mathrm{~Hz}, \mathrm{C}_{8} \mathrm{CH}_{2}\right)$, $2.69\left(1 \mathrm{H}, \mathrm{dq}, J=10.7,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 1.99(1 \mathrm{H}$, br q,$J=6.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{4} H\right), 1.90-1.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{7} \mathrm{H}_{2}, \mathrm{C}_{10} H, \mathrm{C}_{12} H\right), 1.56(1 \mathrm{H}, \mathrm{dq}, J=9.7$, $\left.7.2 \mathrm{~Hz}, \mathrm{C}_{6} H\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.28$ $\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.13$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}, \mathrm{CH}_{3}$ ); NOE difference experiment $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ irradiation at 4.64 gave enhancements at $\delta(\%) 3.92$ (1.1), 3.31 (7.4), 2.96 (8.1), 1.28 (9.5); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.8,100.5,96.5,81.3$, $77.4,76.6,74.1,69.5,57.4,54.2,41.4,39.3,33.3,32.2,30.5,30.2$, $29.6,20.8,19.8,18.5,16.4,12.9,12.0,7.6,7.2 ; \mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.3009$, found $455.3009 ; m / z 455(5$, $[\mathrm{M}$ $+\mathrm{H}]^{+}$), 414 (15), 397 (50), 353 (100), 335 (20), 283 (15), 239 (15), 125 (20).

Ozonolysis of Exocyclic Alkene 74. Ozone was bubbled through a cooled $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of alkene $74(124 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ until the solution turned blue and no starting material was evident by TLC (ca. 15 min ). Triphenylphosphine ( $297 \mathrm{mg}, 1.31$ mmol ) was then added and the solution allowed to warm to room temperature before concentration in vacuo; flash chromatography ( $10 \%$ EtOAc/hexane) provided 60.0 mg of ketone $69(48 \%)$ and 61.0 mg of epoxide $81(48 \%)$. The spectroscopic data for 69 and 81 were identical to those recorded above.

Acid Hydrolysis of Protected Exocyclic Alkene 74 To Give Tetrol 46. To a solution of macrolide $74(20.2 \mathrm{mg}, 46.1 \mu \mathrm{~mol})$ in THF ( 1.5 mL ) was added hydrochloric acid ( $1 \mathrm{~mL} ; 2 \mathrm{M}$ aqueous), and the mixture was heated to $50^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the reaction mixture was quenched by addition of sodium bicarbonate solution ( 10 mL ; saturated, aqueous) and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $70 \% \mathrm{EtOAc} /$
hexanes) afforded 16.1 mg ( $94 \%$ ) of the desired tetrol 46 as a colorless oil. The spectroscopic data were identical to those recorded above.
(2R,3S,4R,5S,6S,9R,10R,11R,12R,13R)-3,5-[(p-Bromobenzyl-idene)dioxy]-9,11-dihydroxy-2,4,6,10,12,13-hexamethyl-8-methylenetetradecanolide (79). To a solution of tetrol $46(300 \mathrm{mg}, 0.81$ mmol ) and $p$-bromobenzaldehyde dimethyl acetal ( $0.42 \mathrm{~mL}, 2.42 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added camphorsulfonic acid (ca. 5 mg ), and the mixture was stirred at room temperature for 45 min . Addition of sodium bicarbonate solution ( 20 mL , saturated, aqueous) and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, followed by drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration in vacuo, then gave the crude product. Flash chromatography ( $25 \%$ EtOAc/hexanes) afforded 387 mg ( $89 \%$ ) of the desired product 79 as a colorless oil: $[\alpha]^{20} \mathrm{D}=+14.2^{\circ}$ (c $1.3, \mathrm{CHCl}_{3}$ ); TLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.25$; IR ( $\mathrm{CHCl}_{3}$ solution) 3420 (br), 1715 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{Ar} H), 7.40(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 5.57\left(1 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CHAr}\right), 5.49(1 \mathrm{H}$, br s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.47\left(1 \mathrm{H}, \mathrm{qd}, J=6.7,1.0 \mathrm{~Hz}, \mathrm{C}_{l 3} \mathrm{H}\right), 5.12(1 \mathrm{H}$, br s, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 4.02(1 \mathrm{H}$, br d, $\left.J=5.8 \mathrm{~Hz}, \mathrm{C}_{9} H\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.47$ $\left(1 \mathrm{H}\right.$, br d$\left., J=9.8 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 3.29(1 \mathrm{H}$, br d, $J=7.6 \mathrm{~Hz}, \mathrm{OH}), 3.06$ $(1 \mathrm{H}, \mathrm{brd}, J=3.5 \mathrm{~Hz}, \mathrm{OH}), 2.78\left(1 \mathrm{H}, \mathrm{dq}, J=10.7,6.7 \mathrm{~Hz}, \mathrm{C}_{2} H\right)$, $2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 2.08-1.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}, \mathrm{C}_{7} \mathrm{H}_{2}\right), 1.72(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{3}\right), 1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.20\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,147.5,137.6$, $131.3,127.9,122.8,109.2,101.9,84.6,80.2,79.0,71.9,69.8,42.6$, $41.5,35.2,34.6,32.3,18.7,16.5,13.2,9.6,6.8,6.7$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{40}{ }^{79} \mathrm{BrO} 6\left([\mathrm{M}+\mathrm{H}]^{+}\right) 539.2008$, found 539.2010; m/z $541(30), 439\left(30,[\mathrm{M}+\mathrm{H}]^{+}\right), 523(15), 521(15), 372(20), 355(100)$, 339 (85), 319 (10), 241 (25), 199 (20).
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 9 R, 10 R, 11 R, 12 R, 13 R)-3,5-[(p$-Bromoben-zylidene)dioxy]-8,8-(epoxymethano)-9,11-dihydroxy-2,4,6,10,12,13hexamethyltetradecanolide (80) and ( $2 R, 3 S, 4 R, 5 S, 6 S, 8 R, 9 R, 10 R$,$11 R, 12 R, 13 R$ )-3,5-[(p-Bromobenzylidene)dioxy]-8,8-(epoxymethano)-9,11-dihydroxy-2,4,6,10,12,13-hexamethyltetradecanolide (8-epi-80). To a stirred solution of alkene 79 ( $78.0 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in carbon tetrachloride ( 3 mL ) at room temperature was added $m$-CPBA ( 74.0 $\mathrm{mg}, 0.43 \mathrm{mmol} ; \sim 99 \%$ purity ${ }^{81}$ ), and the reaction mixture was stirred for 14 h . Dimethyl sulfide ( 0.5 mL , excess) was then added and the reaction stirred for a further 30 min followed by addition of sodium bicarbonate solution ( 15 mL ; saturated, aqueous). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic phases were dried and concentrated in vacuo. Flash chromatography ( $50 \%$ EtOAc/hexanes) followed by HPLC ( $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) afforded $33 \mathrm{mg}(41 \%)$ of the epoxide 80 and $33 \mathrm{mg}(41 \%)$ of the epimeric epoxide 8-epi-80. Data for (8S)-epoxide 80: $[\alpha]^{20}{ }_{\mathrm{D}}=+3.8^{\circ}$ (c 1.1, $\mathrm{CHCl}_{3}$ ); TLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.38 ; \mathrm{HPLC}(50 \%$ EtOAc/hexanes) $R_{t}=15.8 \mathrm{~min}$; IR ( $\mathrm{CHCl}_{3}$ solution) 3450 (br), 1710 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{Ar} H), 7.38(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 5.57(1 \mathrm{H}, \mathrm{qd}, J=6.5,0.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{13} H\right), 5.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CHAr}\right), 4.04(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{OH}), 3.96(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, \alpha$ to O$), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \alpha$ to O$), 3.72(1 \mathrm{H}$, dd, $J=10.0,3.2 \mathrm{~Hz}, \alpha$ to O$), 3.61(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \alpha$ to O$), 3.23$ $(1 \mathrm{H}$, br s, OH$), 3.09\left(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{dq}$, $\left.J=10.8,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.67\left(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.19$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right), 2.00\left(1 \mathrm{H}\right.$, br $\left.\mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{C}_{4} H\right), 1.89(1 \mathrm{H}, \mathrm{dd}$, $J=15.5,11.5 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.81\left(1 \mathrm{H}, \mathrm{dd}, J=15.5,3.6 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}_{2}\right)$, $1.62\left(1 \mathrm{H}, \mathrm{dq}, J=10.1,7.0 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{d}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,137.9,131.5$, $128.1,122.9,102.2,84.8,80.9,74.7,72.3,69.7,61.0,43.4,42.5,42.1$, $33.7,32.3,32.2,29.8,18.7,16.2,13.5,9.8,8.8$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{27} \mathrm{H}_{40}{ }^{79} \mathrm{BrO}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 555.1957$, found $555.1960 ; \mathrm{m} / \mathrm{z} 557(10$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 555\left(10,[\mathrm{M}+\mathrm{H}]^{+}\right), 539(10), 537(10), 371(40), 353$ (100), 335 (40), 239 (30), 125 (80). Data for ( $8 R$ )-epoxide 8-epi-80: $[\alpha]^{20}=+14.3^{\circ}\left(c 1.4, \mathrm{CHCl}_{3}\right)$; TLC ( $50 \% \mathrm{EtOAc} /$ hexanes $) R_{f}=0.34 ;$ HPLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{t}=18.3 \mathrm{~min}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$ solution) 3380 (br), 1725 (s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 5.53(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{C}_{13} H\right), 5.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CHAr}\right), 3.99\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 3.86$
$\left(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{C}_{9} H\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.65(1 \mathrm{H}$, $\left.\mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 3.18\left(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 3.17$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.92\left(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.80(1 \mathrm{H}, \mathrm{dq}$, $\left.J=10.6,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H\right), 2.05-$ $1.95\left(2 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}, \mathrm{C}_{12} \mathrm{H}\right), 1.87\left(1 \mathrm{H}\right.$, br $\left.\mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{C}_{4} H\right)$, $1.82\left(1 \mathrm{H}\right.$, br d, $J=16.2 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.57(1 \mathrm{H}, \mathrm{dq}, J=8.9,7.2$ $\left.\mathrm{Hz}, \mathrm{C}_{10} H\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.05\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.8,137.3,131.2,127.8,122.8,101.7$, $84.2,81.6,76.5,72.1,70.8,59.9,48.9,42.5,41.3,34.4,32.6,32.4$, $29.2,18.0,16.9,12.9,9.7,8.7$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{40}{ }^{79}$ $\mathrm{BrO}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 555.1957$, found 555.1960; $m / z 557\left(10,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 555 (10, [M + H] ${ }^{+}$), 539 (5), 537 (5), 371 (30), 353 (100), 335 (25), 257 (20), 239 (15), 125 (45).
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 10 R, 11 R, 12 R, 13 R)-3,5-[(p$-Bromobenzylidene-)dioxy]-8,8-(epoxymethano)-9,11-dihydroxy-2,4,6,10,12,13-hexamethyltetradecanolide (82). To a stirred solution of the allylic alcohol $79(31.0 \mathrm{mg}, 57.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added freshly prepared activated manganese dioxide ( 200 mg , excess) ${ }^{83}$ and the mixture was stirred for 18 h before filtering through Celite and concentrating in vacuo. Flash chromatography (30\% EtOAc/ hexanes) afforded $28 \mathrm{mg}(78 \%)$ of the desired enone 82 as a colorless oil: TLC ( $50 \% \mathrm{EtOAc} /$ hexanes $) R_{f}=0.40 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.51(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 5.97$ $\left(1 \mathrm{H}\right.$, br s , one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 5.63\left(1 \mathrm{H}, \mathrm{qd}, J=6.6,1.0 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 5.55$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHO} 2), 5.38\left(1 \mathrm{H}\right.$, br s, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 4.07(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.6.4,1.0 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,0.9 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.64(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{11} H\right), 3.18\left(1 \mathrm{H}\right.$, br q, $\left.J=6.7 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 2.84(1 \mathrm{H}, \mathrm{dq}, J=10.8,6.6$ $\left.\mathrm{Hz}, \mathrm{C}_{2} H\right), 2.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H\right), 2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{7} \mathrm{H}_{2}\right), 1.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} H\right)$, $1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right), 1.30\left(3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25-1.15(9 \mathrm{H}, \mathrm{m}, 3$ $\left.\times \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ).
( $2 R, 3 S, 4 R, 5 S, 6 S, 10 R, 11 S, 12 S, 13 R$ )-11-Hydroxy-3,5-(isopropy-lidenedioxy)-2,4,6,10,12,13-hexamethyl-8-oxotetradecanolide (85). To a solution of ketone $69(20.0 \mathrm{mg}, 45.4 \mu \mathrm{~mol})$ and diiodomethane ( $24.3 \mathrm{mg}, 90.8 \mu \mathrm{~mol}$ ) in THF ( 2 mL ) at room temperature was added samarium diiodide solution ( $1.13 \mathrm{~mL}, \sim 113 \mu \mathrm{~mol} ; \sim 0.1 \mathrm{M}$ in THF). After stirring for 2 min , the reaction mixture was quenched with ammonium chloride solution ( 10 mL ; saturated, aqueous). Extraction with diethyl ether ( $3 \times 10 \mathrm{~mL}$ ), drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave the crude product. Flash chromatography ( $20 \% \mathrm{EtOAc} /$ hexanes) afforded 16.3 mg ( $79 \%$ ) of the product 85 as a colorless oil: TLC ( $20 \% \mathrm{EtOAc} /$ hexanes) $R_{f}=0.19$; IR $\left(\mathrm{CHCl}_{3}\right.$ solution) 1715 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.59\left(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{C}_{13} H\right)$, $4.34\left(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.04$ $\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 2.70-2.20\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} H, \mathrm{C}_{6} H, \mathrm{C}_{7} \mathrm{H}_{2}, \mathrm{C}_{9} \mathrm{H}_{2}\right.$, $\left.\mathrm{C}_{10} H\right), 1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} H\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCCH}_{3}\right), 1.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91\left(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100.6$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,175.7,100.5,76.9,71.9,71.5,70.2,49.2,44.4$, $42.0,41.5,32.7,31.1,29.7,20.0,18.5,14.9,13.3,12.1,8.8,7.6$; HRMS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{NO}_{6}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 416.3012$, found 416.3012; $\mathrm{m} / \mathrm{z} 416$ (25, $[\mathrm{M}+\mathrm{H}]^{+}$), 341 (70), 323 (100).
(2R,3S,4R,5S,6S,8R,9R,10R,11S,12S,13R)-8,8-(Epoxymethano)-9,-11-(S)-(ethylidenedioxy)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13hexamethyltetradecanolide (83). In an argon-flushed flask, sodium hydride ( $100 \mathrm{mg}, 60 \%$ dispersion in mineral oil) was washed with dry hexane ( $3 \times 10 \mathrm{~mL}$ ) and the supernatant removed via cannula. DMSO $(5 \mathrm{~mL})$ was then added and the mixture heated at $60^{\circ} \mathrm{C}$ until gas evolution stopped ( $c a .1 \mathrm{~h}$ ), before cooling to room temperature. The dark solution of base was assumed to be 0.5 M in concentration.

To a solution of trimethylsulfonium iodide ( $28.0 \mathrm{mg}, 0.14 \mathrm{mmol}$ ) in DMSO ( 0.5 mL ) and THF ( 0.75 mL ) at $0^{\circ} \mathrm{C}$ was added an aliquot of the previously prepared base $(0.27 \mathrm{~mL}, \sim 0.14 \mathrm{mmol})$, and the mixture was stirred for 5 min to complete ylide formation. A solution of ketone $69(20 \mathrm{mg}, 45.4 \mu \mathrm{~mol})$ in THF ( $0.5 \mathrm{~mL}+0.5 \mathrm{~mL}$ washings) was then added via cannula and the reaction mixture allowed to warm

[^22]to room temperature over 1 h . Stirring was continued for a further 4 h , after which time the reaction mixture was quenched by addition of ammonium chloride solution ( 10 mL ; saturated, aqueous) and extracted with diethyl ether ( $4 \times 15 \mathrm{~mL}$ ). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $15 \%$ EtOAc/hexanes) afforded 17.1 mg ( $83 \%$ ) of the desired epoxide 83 as a colorless oil: $[\alpha]^{20} \mathrm{D}=+3.9^{\circ}$ (c 3.1, $\mathrm{CHCl}_{3}$ ); TLC ( $20 \% \mathrm{EtOAc}$ / hexanes) $R_{f}=0.38$; IR $\left(\mathrm{CHCl}_{3}\right.$ solution) $1728(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53\left(1 \mathrm{H}, \mathrm{q}, J=6.6, \mathrm{C}_{13} H\right), 5.50(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 3.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{9} H\right), 3.77$ $\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.66\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 2.84(1 \mathrm{H}$, $\mathrm{d}, J=5.3 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{dq}, J=10.7,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right)$, $2.64\left(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.11(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{C}_{4} H\right), 1.98\left(1 \mathrm{H}, \mathrm{dd}, J=14.3,12.3 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.91(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} H\right), 1.75\left(1 \mathrm{H}, \mathrm{dd}, J=14.3,0.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.73(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{10} H\right), 1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} H\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCCH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.19(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}$, $\left.H_{3} \mathrm{CCHO}_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.95\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8$, $100.3,97.1,77.2,76.8,75.2,73.1,70.2,59.5,43.1,41.6,40.5,32.6$, $32.3,31.3,29.8,29.0,21.5,20.1,18.7,16.0,13.5,12.1,7.9,7.4$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.3009$, found 455.3009; $m / z 455\left(10,[\mathrm{M}+\mathrm{H}]^{+}\right), 414$ (20), 397 (100), 353 (100), 335 (32), 283 (15), 239 (25), 125 (15).
(2R,3S,4R,5S,6S,8S,9R,10R,11S,12S,13R)-9,11-(S)-(Ethylidenedioxy)-8-hydroxy-8-(iodomethyl)-3,5-(isopropylidenedioxy)-2,4,6,10,12,13hexamethyltetradecanolide (84). To a solution of epoxide 83 (19.0 $\mathrm{mg}, 41.8 \mu \mathrm{~mol}$ ) in THF ( 0.5 mL ) was added lithium iodide ( 18.0 mg , $133 \mu \mathrm{~mol})$ followed by acetic acid $(7.2 \mu \mathrm{~L}, 125.4 \mu \mathrm{~mol})$. The mixture was then stirred at room temperature for 18 h before being partitioned between pH 7 buffer solution ( 10 mL ) and diethyl ether ( $3 \times 10 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give $21.2 \mathrm{mg}(87 \%)$ of the desired iodohydrin 84 as a pale yellow oil: $[\alpha]^{20}{ }_{\mathrm{D}}=-2.5^{\circ}$ (c 1.6, $\mathrm{CHCl}_{3}$ ); TLC ( $40 \%$ EtOAc/hexanes) $R_{f}=0.48$; IR ( $\mathrm{CHCl}_{3}$ solution) 3486 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.54\left(1 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCHO}_{2}\right), 5.50(1 \mathrm{H}, \mathrm{q}, J=6.6$, $\left.\mathrm{C}_{13} H\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 3.85\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{C}_{5} H\right)$, $3.83\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{C}_{9} H\right), 3.67\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.46(1 \mathrm{H}, \mathrm{d}, J$ $=10.0 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 3.36\left(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right)$, $2.68\left(1 \mathrm{H}, \mathrm{dq}, J=10.0,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} H\right), 2.05(1 \mathrm{H}, \mathrm{q}$, $\left.J=6.7 \mathrm{~Hz}, \mathrm{C}_{4} H\right), 1.97\left(1 \mathrm{H}, \mathrm{dd}, J=15.1,7.1 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.89$ $\left(1 \mathrm{H}\right.$, br q, $\left.J=6.5 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 1.68(1 \mathrm{H}$, br d, $J=15.1 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} \mathrm{H}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCCH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ $\left.\mathrm{CCCH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, H_{3} \mathrm{CCHO}_{2}\right), 1.23(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.13\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,100.5,97.3,80.0,77.4,74.4$, $74.0,70.4,41.8,40.4,36.6,32.6,31.9,29.8,28.6,22.1,20.1,18.8$, $16.8,16.0,13.3,12.6,7.7,7.4$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{IO}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 583.2131$, found $583.2130 ; \mathrm{m} / \mathrm{z} 583\left(5,[\mathrm{M}+\mathrm{H}]^{+}\right), 525$ (60), 481 (100), 463 (80), 397 (45), 353 (70), 335 (45), 239 (30), 171 (30), 125 (65).
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 9 R, 10 R, 11 R, 12 R, 13 R)-3,5-[(p$-Bromoben-zylidene)dioxy]-8,8-(epoxymethano)-9,11-dihydroxy-2,4,6,10,12,13hexamethyltetradecanolide (80). To a solution of iodohydrin 84 (21.0 $\mathrm{mg}, 36.04 \mu \mathrm{~mol}$ ) in THF ( 1 mL ) was added hydrochloric acid ( 1 mL ; 2 M aqueous), and the mixture was heated at $55^{\circ} \mathrm{C}$ for 1 h . The mixture was allowed to cool before diluting with water ( 5 mL ) and extracting with diethyl ether $(5 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude pentol as a pale yellow oil which was used immediately in the next reaction.

To a solution of the crude pentol prepared above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $p$-bromobenzaldehyde dimethyl acetal ( $9.0 \mu \mathrm{~L}, 51.0 \mu \mathrm{~mol}$ ) followed by camphorsulfonic acid (1 crystal), and the mixture was stirred at room temperature for 1 h . Sodium bicarbonate solution (2 mL , saturated, aqueous) was then added and the mixture stirred vigorously at room temperature for 20 min before being extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash chromatography ( $50 \%$ EtOAc/hexanes) afforded 14.5 mg ( $72 \%$ ) of the desired product 80 as
a colorless oil. Spectroscopic properties are in accordance with those reported for 80 prepared earlier from 79.
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 10 R, 11 R, 12 R, 13 R)$-3,5-[( $p$-Bromobenzylidene-)dioxy]-8,8-(epoxymethano)-11-hydroxy-2,4,6,10,12,13-hexamethyl-9-oxotetradecanolide (86). To a stirred solution of epoxide 80 ( 13.0 $\mathrm{mg}, 23.4 \mu \mathrm{~mol}$ ) in toluene ( 1 mL ) was added PCC on alumina ( 70.0 $\mathrm{mg}, 70.0 \mu \mathrm{~mol}$ ), ${ }^{76}$ and the mixture was stirred at room temperature for 18 h . The reaction mixture was then eluted through a Celite plug with toluene and concentrated in vacuo. Flash chromatography ( $25 \%$ EtOAc/ hexanes) provided 1.6 mg of recovered starting material and 10.1 mg ( $78 \%, 89 \%$ based on recovered starting material) of the desired ketone 86 as a colorless oil: $[\alpha]^{20}{ }_{D}=-48.0^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$ ); TLC ( $50 \%$ EtOAc/hexanes) $R_{f}=0.60 ;$ IR $\left(\mathrm{CHCl}_{3}\right.$ solution) 3500 (br), 1705 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH})$, $7.39(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar} H), 5.76\left(1 \mathrm{H}, \mathrm{qd}, J=6.6,1.1 \mathrm{~Hz}, \mathrm{C}_{13} H\right)$, $5.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CHAr}\right), 4.36\left(1 \mathrm{H}\right.$, br d, $\left.J=9.9 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 4.02(1 \mathrm{H}, \mathrm{d}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{C}_{5} H\right), 3.75\left(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.12(1 \mathrm{H}, \mathrm{d}, J=$ 4.1 Hz , one of $\left.\mathrm{C}_{8} H_{2}\right), 3.04\left(1 \mathrm{H}, \mathrm{qd}, J=6.7,1.7 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 2.98(1 \mathrm{H}$, $\mathrm{d}, J=4.1 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{8} \mathrm{H}_{2}\right), 2.87\left(1 \mathrm{H}, \mathrm{dq}, J=10.9,6.6 \mathrm{~Hz}, \mathrm{C}_{2} H\right)$, $2.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{OH}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=15.0,12.0 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H, \mathrm{C}_{6} H\right), 2.08(1 \mathrm{H}, \mathrm{dd}, J=15.0,2.0 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.65\left(1 \mathrm{H}, \mathrm{dq}, J=10.0,6.9 \mathrm{~Hz}, \mathrm{C}_{12} H\right), 1.29(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.02\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.9$, $174.4,137.7,131.3,127.9,122.8,101.7,84.0,80.3,70.1,69.8,63.3$, $46.8,46.7,41.4,41.3,32.7,32.1,31.4,18.5,16.2,13.0,9.2,8.7,6.0$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{27} \mathrm{H}_{40}{ }^{79} \mathrm{BrO}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 553.1801$, found $553.1800 ; m / z 572\left(15,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 570\left(15,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 553$ $\left(40,[\mathrm{M}+\mathrm{H}]^{+}\right), 551\left(40[\mathrm{M}+\mathrm{H}]^{+}\right), 369(100), 351$ (85).
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 10 R, 11 R, 12 R, 13 R$ )-8,8-(Epoxymethano)-3,5,-11-trihydroxy-2,4,6,10,12,13-hexamethyl-9-oxotetradecanolide, Oleandolide (2). To a solution of acetal $86(10.6 \mathrm{mg}, 19.2 \mu \mathrm{~mol})$ in ethyl acetate ( 2 mL ) was added solid sodium bicarbonate ( 50 mg , excess) followed by palladium on charcoal ( $10 \% \mathrm{Pd}$ content, 50 mg ), and the mixture was stirred under a hydrogen atmosphere for 30 min . Filtration through a plug of Celite followed by evaporation gave the crude product. Rapid flash chromatography ( $49 \% \mathrm{EtOAc} / 1 \% \mathrm{Et}_{3} \mathrm{~N} /$ hexanes) then gave 7.0 mg (95\%) of oleandolide as a colorless oil: $[\alpha]^{20}=-14.3$ (c $\left.1.05 \mathrm{CHCl}_{3}\right)\left[c f . \mathrm{lit}^{6 \mathrm{a}}[\alpha]^{20} \mathrm{D}=-13.0\left(c 1.0 \mathrm{CHCl}_{3}\right)\right] ;$ TLC $(70 \% \mathrm{EtOAc} /$ hexanes) $\mathrm{R}_{f}=0.20$; IR (thin film) 3500 (br), 1725 (s) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) (5,9-hemiacetal form) $\delta 4.99(1 \mathrm{H}, \mathrm{qd}, J=6.4,2.2$ $\left.\mathrm{Hz}, \mathrm{C}_{13} H\right), 4.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H, \mathrm{C}_{11} H\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{3} H\right), 2.97\left(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{d}, J=4.6$ Hz , one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.53\left(1 \mathrm{H}, \mathrm{qd}, J=7.2,0.9 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.26(1 \mathrm{H}, \mathrm{q}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} H\right), 1.92(1 \mathrm{H}, \mathrm{dd}, J=14.0,12.3$ Hz , one of $\mathrm{C}_{7} \mathrm{H}_{2}$ ), $1.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}, \mathrm{C}_{12} \mathrm{H}\right), 1.41(1 \mathrm{H}, \mathrm{dd}, J=14.0$, 4.2 Hz , one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.32\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; 9-keto form (minor tautomer, some peaks obscured) $\delta 5.65$ (1H, qd, J $\left.=6.7,1.3 \mathrm{~Hz}, \mathrm{C}_{13} H\right), 3.88\left(1 \mathrm{H}, \mathrm{dd}, J=10.4,1.8 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 3.79(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} H, \mathrm{C}_{11} H\right), 3.05\left(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 3.03(1 \mathrm{H}, \mathrm{qd}$, $\left.J=6.7,1.8 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 2.77\left(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.72$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)(5,9$-hemiacetal form) $\delta$
$177.8,98.9,76.0,71.1,70.0,58.5,52.2,43.7,43.5,40.2,36.5,34.6$, $29.9,17.8,16.6,9.7,9.0,8.9,8.65$; ( 9 -keto form) (minor tautomer) $\delta$ $207.0,176.1,77.3,76.4,69.8,69.2,62.2,52.2,45.0,43.9,41.7,39.1$, $32.2,31.0,18.6,18.5,14.3,8.9,7.5,6.4$; HRMS (CI, $\mathrm{NH}_{3}$ ) calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 387.2383$, found $387.2383 ; \mathrm{m} / \mathrm{z} 404$ (55, [M + $\left.\mathrm{NH}_{4}\right]^{+}$), $387\left(50,[\mathrm{M}+\mathrm{H}]^{+}\right), 369(100), 351(40), 226(40), 138(70)$, 124 (45), 104 (50).
( $2 R, 3 S, 4 R, 5 S, 6 S, 8 S, 10 R, 11 R, 12 R, 13 R$ )-3,5,11-Triacetoxy-8,8-(ep-oxymethano)-2,4,6,10,12,13-hexamethyl-9-oxotetradecanolide, Triacetyloleandolide (87). To a solution of synthetic oleandolide 2 (24 $\mathrm{mg}, 62.1 \mu \mathrm{~mol}$ ) in dry pyridine ( 0.5 mL ) at room temperature were added acetic anhydride ( $59.0 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$ ) and a crystal of DMAP (ca. 5 mg ), and the mixture was stirred for 48 h . The solvent was then removed in vacuo and the mixture purified by flash chromatography ( $50 \% \mathrm{EtOAc} /$ hexanes) followed by HPLC ( $50 \% \mathrm{EtOAc} /$ hexanes) to give $17.5 \mathrm{mg}(55 \%)$ of oleandolide triacetate as a colorless oil: $[\alpha]^{20} \mathrm{D}$ $=+39.7\left(c 0.61 \mathrm{CHCl}_{3}\right),\left[c f .1 t^{6 a}[\alpha]^{20}{ }_{\mathrm{D}}=+43\left(c 1.0 \mathrm{CHCl}_{3}\right)\right]$; TLC (70\% EtOAc/hexanes) $\mathrm{R}_{f}=0.43$; HPLC ( $50 \% \mathrm{EtOAc} /$ hexanes) $R_{t}=$ 18.3 min ; IR (thin film) 1737 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $5.22\left(1 \mathrm{H}, \mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, \mathrm{C}_{3} H\right), 5.19(1 \mathrm{H}, \mathrm{qd}, J=6.6,1.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{13} H\right), 4.99\left(1 \mathrm{H}, \mathrm{dd}, J=9.8,1.4 \mathrm{~Hz}, \mathrm{C}_{11} H\right), 4.74(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{5} H\right), 3.18\left(1 \mathrm{H}, \mathrm{qd}, J=5.0,1.5 \mathrm{~Hz}, \mathrm{C}_{10} H\right), 2.75(1 \mathrm{H}, \mathrm{dq}, J=10.0$, $\left.6.8 \mathrm{~Hz}, \mathrm{C}_{2} H\right), 2.62\left(1 \mathrm{H}, \mathrm{ABq}, J=5.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right), 2.59(2 \mathrm{H}$, obscured $\left.\mathrm{m}, \mathrm{C}_{4} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 2.57\left(1 \mathrm{H}, \mathrm{ABq}, J=5.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}_{8} \mathrm{CH}_{2}\right)$, $2.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{12} H\right), 2.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{H}_{3} \mathrm{CCOO}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, H_{3} \mathrm{CCOO}\right)$, $1.86\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}_{7} H_{2}\right), 1.36(1 \mathrm{H}, \mathrm{dd}, J=15.0,11.9 \mathrm{~Hz}$, one of $\left.\mathrm{C}_{7} \mathrm{H}_{2}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08-0.98\left(15 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{3}\right.$, all overlapping); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 206.2,172.4,170.7$, $170.1,170.0,78.1,74.1,70.4,68.8,63.6,51.2,42.2,41.7,39.8,39.4$, $35.1,31.5,20.8,20.7,20.6,18.8,18.3,13.5,9.7,9.0 ; \mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{NO}_{10}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 530.2964$, found 530.2970; m/z $530\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 514(10), 453(10), 393(10), 96(10)$.

Acknowledgment. We thank the SERC (GR/H01922), Roussel Laboratories (CASE Studentship to R.D.N.), Pfizer Central Research, and the Ministerio de Educacion y Ciencia of Spain (Postdoctoral Fellowship to P.R.) for support, Professor K. Tatsuta (Waseda University) for kindly providing copies of NMR spectra, and Dr. J. M. Goodman (Cambridge) for expert assistance with molecular modeling.

Supplementary Material Available: Text giving the details of the experimental procedure for the preparation of seco-acids 71 and 73, the preparation of protected macrolides 75 and 76, and the proof of the absolute configurations of the aldol adduct $7(A A)$ and the ( $13 R$ )-alcohols 59,93 , and 100 , details of instrumentation, purification of reagents and solvents, and chromatography, and spectroscopic data for minor diastereomers produced in the aldol, hydroboration, and Grignard addition reactions ( 23 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.


[^0]:    ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 1, 1994.
    (1) Macrolide Antibiotics, Chemistry, Biology and Practice; Ömura, S., Ed.; Academic Press: Orlando, FL, 1984.
    (2) Sobin, B. A.; English, A. R.; Celmer, W. D. Antibiot. Annu. 1955, 827.
    (3) (a) Els, H.; Celmer, W. D.; Murai, K. J. Am. Chem. Soc. 1958, 80 , 3777. (b) Hochstein, F. A.; Els, H.; Celmer, W. D.; Shapiro, B. L.; Woodward, R. B. J. Am. Chem. Soc. 1960, 82, 3225. (c) Celmer, W. D. J. Am. Chem. Soc. 1965, 87, 1797. (d) Ogura, H.; Furuhata, K.; Harada, Y.; Iitaka, Y. J. Am. Chem. Soc. 1978, 100, 6733.
    (4) For a review of the mode of action of macrolide antibiotics, see: Corcoran, J. W. In ref 1.
    (5) For a review of macrolides in (a) clinical practice, see: Nakayama, I. In ref 1. For (b) veterinary practice, see: Wilson, R. C. In ref 1.

[^1]:    (6) (a) Tatsuta, K.; Kobayashi, Y.; Gunji, H.; Masuda, H. Tetrahedron Lett. 1988, 29, 3975. (b) Tatsuta, K.; Ishiyama, T.; Tajima, S.; Koguchi, Y., Gunji, H. Tetrahedron Lett. 1990, 31, 709.
    (7) Other synthetic studies: (a) Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S. Tetrahedron Lett. 1981, 22, 4315, 4319. (b) Paterson, I. Tetrahedron Lett. 1983, 24, 1311. (c) Costa, S. S.; Olesker, A.; Thang, T. T.; Lukacs, G, J. Org. Chem. 1984, 49, 2338. (d) Kobayashi, Y.; Uchiyama, H.; Kanbara, H.; Sato, F. J. Am. Chem. Soc. 1985, 107, 5541. (e) Paterson, I.; Arya, P. Tetrahedron 1988, 44, 253. (f) Kochetkov, N. K.; Yashunsky, D. V.; Sviridov, A. F.; Ermolenko, M. S. Carbohydr. Res. 1990, 200, 209. (g) Sviridov, A. F.; Yashunsky, D. V.; Kuz'min, A. S.; Kochetkov, N. K. Mendeleev Commun. 1991, 4. (h) Sviridov, F. S.; Yashunsky, D. V.; Kuz'min, A. S.; Kochetkov, N. K. Mendeleev Commun. 1992, 65.
    (8) For preliminary communications of this work, see: (a) Paterson, I.;; Lister, M. A.; Norcross, R. D. Tetrahedron Lett. 1992, 33, 1767. (b) Paterson, I.; Ward, R. A.; Romea, P.; Norcross, R. D. J. Am. Chem. Soc. 1994, 116, 3623.
    (9) For a different (less effective) aldol-based approach to oleandolide synthesis, see: Paterson, I.; McClure, C. K. Tetrahedron Lett. 1987, 28 , 1229.
    (10) (a) Paterson, I.; Lister, M. A.; McClure, C. K. Tetrahedron Lett. 1986, 27, 4787. (b) ref 9. (c) Paterson, I.; Lister, M. A. Tetrahedron Lett. 1988, 29, 585. (d) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121. (e) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. S.; McClure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663. (f) Paterson, I. Pure Appl. Chem. 1992, 64, 1821. (g) Paterson, I. Channon, J. A. Tetrahedron Lett. 1992, 33, 797. (h) Paterson, I. Tillyer, R. D. Tetrahedron Lett. 1992, 33, 4233.

[^2]:    (11) General reviews on macrolide synthesis: (a) Masamune, S.; McCarthy, P. A. In ref 1. (b) Paterson, I.; Mansuri, M. M. Tetrahedron 1985, 41, 3569. (c) Bartra, M.; Urpí, F.; Vilarassa, J. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products; Kukacs, G., Ed.; Springer-Verlag: Berlin, 1993; Vol. 2.

[^3]:    (12) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chêneveret, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garrat, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc. 1981, 103, 3210, 3213, 3215.
    (13) Grisebach, H.; Hofheinz, W. J. R. Inst. Chem. 1964, 88,332
    (14) For a review of asymmetric aldol methodology, see: (a) Heathcock, C. H.; Moon Kim, B.; Williams, S. F.; Masamune, S.; Paterson, I.; Gennari, C. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2. (b) Franklin, A. S.; Paterson, I. Contemp. Org. Synth., in press.
    (15) In our nomenclature system for aldol diastereomers, such as 7 (SA), the first descriptor (in this case $S$ for $s y n$ ) refers to the relative stereochemistry of the aldol bond construction and the second descriptor (here $A$ for anti) defines the relative stereochemistry of the two methyl substituents flanking the carbonyl.

[^4]:    (16) (a) Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun. 1981, 1240. (b) Widmer, U. Synthesis 1987, 568.
    (17) (a) Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989. (b) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
    (18) The enantiomeric purity of ( $S$ )- $\mathbf{8}$ was determined by debenzylation $\left(\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$ to give an $89 \%$ yield of the corresponding hydroxyketone which chiral shift ${ }^{1} \mathrm{H}$ NMR studies at 250 MHz using Eu(hfc) ${ }_{3}$ indicated had $\geq 97 \%$ ee.
    (19) For leading references on dialkylboron triflate mediated syn aldol reactions of ethyl ketones, see: (a) Mukaiyama, T.; Inoue, T. Chem. Lett. 1976, 559. (b) Inoue, T.; Uchimaru, T.; Mukaiyama, T. Chem. Lett. 1977, 153. (c) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, 53, 174. (d) Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120. (e) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099. (f) Masamune, S.; Mori, S.; Van Horn, D.; Brooks, D. W. Tetrahedron Lett. 1979, 19, 1665. (g) Hirama, M.; Masamune, S. Tetrahedron Lett. 1979, 24, 2225. (h) Van Horn, D. E.; Masamune, S. Tetrahedron Lett. 1979, 24, 2295 . (i) Hirama, M.; Garvey, D. S.; Lu, L. D. L.; Masamune, S. Tetrahedron Lett. 1979, 41, 3937.
    (20) In contrast, enolization of ( $S$ )-8 using the less-hindered base triethylamine leads to a marked preference for ( $E$ )-enol borinate formation, giving almost entirely anti aldol adducts in the reaction with methacrolein (syn:anti $=6: 94$; see ref 10 c ).

[^5]:    (21) Prepared in two steps from ( + )- $\alpha$-pinene: see ref 10 e .
    (22) Bernardi, A.; Capelli, A. M.; Comotti, A.; Gennari, C.; Gardner, M.; Goodman, J. M.; Paterson, I. Tetrahedron 1991, 47, 3471.

[^6]:    (23) Note that TSs 19 and 20 both possess a chair conformation. Boat TSs were found to be significantly higher in energy, thus accounting for the experimental observation of essentially complete syn diastereoselectivity for $(Z)$-enol borinates 15 and 17.
    (24) In 21 the methyl groups adjacent to the boron on the two Ipc ligands are on opposite sides, whereas in 19 and 20 these methyl groups are on the same side.
    (25) (a) Narasaka, K.; Pai, F.-C. Tetrahedron 1984, 40, 2233; (b) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repič, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.
    (26) In situ reduction of the diisopinocampheylboron aldolate formed during the aldol reaction used to prepare 7 (SA) was also attempted, thus saving a synthetic step. Unfortunately, it proved difficult to separate the resulting diol 22 from the isopinocampheol produced on oxidative workup. However, the strategy of in situ reduction of the aldolate resulting from an aldol reaction was later successfully applied in our synthesis of the marine natural product denticulatin (see: Paterson, I.; Perkins, M. V. Tetrahedron Lett. 1992, 33, 801), and also in our synthesis of the $\delta$-lactone subunit of the marine natural product discodermolide (see: Paterson, I.; Wren, S. P. J. Chem. Soc., Chem. Commun. 1993, 1790).
    (27) The $\mathrm{C}_{9}, \mathrm{C}_{11}-5 y n$ relative stereochemistry of 22 was confirmed by formation of its acetonide ( $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 88 \%$ yield) which had ${ }^{13} \mathrm{C}$ NMR resonances at $\delta 98.9,30.0$, and 19.7, consistent with the indicated stereochemistry. See: (a) Rychnovsky, S. D.; Skalitsky, D. J. Tetrahedron Lett. 1990, 31, 945. (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099.

[^7]:    (35) A similar mechanism has been proposed by Evans for reduction of $\beta$-hydroxyketones using catecholborane. See: Evans, D. A.; Hoveyda, A. H. J. Org. Chem. 1990, 55, 5190.
    (36) Still, W. C.; Barrish, J. C. J. Am. Chem. Soc. 1983, 105, 2487.
    (37) Four isomeric products were obtained, however, instead of the two epimers 38 expected. It was suspected that the two additional products arose from migration of TBS from the $\mathrm{C}_{9}$ oxygen to the $\mathrm{C}_{8}$ hydroxyl (a conceivably less sterically hindered environment) which could have occurred during either the coupling or subsequent desulfoxidation steps.

[^8]:    (38) Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537
    (39) The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the major product had characteristic signals due to the two geminally coupled protons at $\mathrm{C}_{7}[\delta$ $2.74(1 \mathrm{H}, \mathrm{dd}, J=17.6,2.5 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=17.6,9.0 \mathrm{~Hz})]$ of 40. Such signals were absent in the proton NMR spectrum of the minor product, which was thus tentatively assigned the structure 41 wherein TBS migration had taken place. The configuration at $\mathrm{C}_{8}$ of 41 was not determined.
    (40) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
    (41) (a) Paterson, L; Laffan, D. D. P.; Rawson, D. J. Tetrahedron Lett. 1988, 29, 1461. (b) Paterson, I.; Rawson, D. J. Tetrahedron Lett. 1989, 30, 7463.

[^9]:    (42) We used the MM2 force field in MacroModel, v 3.5: Mohamedi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, II, 440.

[^10]:    (43) (a) Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978. 2417. (b) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293. (c) Hibino, J; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5579.
    (44) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. J. Am. Chem. Soc. 1978, 100, 3611. (b) Clawson, L.; Buchwald, S. L.; Grubbs, R. H. Tetrahedron Lett. 1984, 25, 5733. (c) Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz. S. G.; Gallego, C. H.; Tijerina, T.; Pine, R. D. J. Org. Chem. 1985, 50, 1212 .
    (45) Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281.
    (46) (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353. (b) Gololobov, Yu. G.; Nesmeyanov, A. N.; Lysenko, V. P.; Boldeskful, I. E. Tetrahedron 1987, 43, 2609.
    (47) $49 \mathrm{had} 400 \mathrm{MHz}{ }^{\mathrm{i}} \mathrm{H}$ NMR resonances at $\delta 5.31(1 \mathrm{H}, \mathrm{br}$ s) and 5.11 $(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ for the exocyclic olefinic protons and an additional resonance at $\delta 5.47(1 \mathrm{H}$, br d. $J=8.5 \mathrm{~Hz})$ for the endocyclic olefin. Subsequent computer modeling (vide infra) of the two possible $\mathrm{C}_{11}-\mathrm{C}_{12}$ elimination products from $\mathbf{5 1}$ (in which the TBS groups of $\mathbf{4 5}$ have been replaced by TMS groups to simplify the computation) suggested that formation of the $11 E$ doublebond isomer 52 was more likely (despite requiring a syn elimination of TBSOH) than production of the $11 Z$ isomer (which was calculated to be $2.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy than the $11 E$ isomer, and which required an anti elimination process necessitating approach of base from a direction blocked by the macrolide ring structure; the distance was too great to postulate that such deprotonation at $\mathrm{C}_{12}$ could occur by transannular attack of an enolate anion formed at $\mathrm{C}_{7}$ ). Hence, the product from the Wittig reaction of ketone 45 was tentatively assigned the $11 E$ structure 49 . The alternative possibilities of elimination of TBSOH across $\mathrm{C}_{9}-\mathrm{C}_{10}$ or $\mathrm{C}_{10}-$ $\mathrm{C}_{11}$ could be easily ruled out, since the resultant structures were incompatible with the recorded ${ }^{~} \mathrm{H}$ NMR spectrum.

[^11]:    (48) Evidence for the applicability of this conformation was provided by NOE difference NMR experiments on 45 . Irradiation of the $\mathrm{C}_{9}$ hydrogen resulted in NOE signal enhancements for the hydrogens on both $\mathrm{C}_{7}(4.2 \%)$ and $\mathrm{C}_{10}(6.8 \%)$, and a transannular NOE was observed from the hydrogen on $\mathrm{C}_{3}$ to one of the methyl groups of the OTMS substituent on $\mathrm{C}_{11}(2.7 \%)$. Both observations are consistent with the conformation of 51 depicted in Scheme 11.

[^12]:    (52) Vulpetti, A.; Bernardi, A.; Gennari, C.; Goodman, J. M.; Paterson, I. Tetrahedron 1993, 49, 685.
    (53) For a review of $\mathbf{A}(1,3)$ allylic strain, see: Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
    (54) This is supported by the results of the $(\mathrm{Chx})_{2} \mathrm{BCl} / \mathrm{Et}_{3} \mathrm{~N}$-mediated anti aldol reaction of ketone v , where a $\mathrm{CH}_{2}$ group replaces the benzyl ether oxygen in $(R)-8$.
    
    (R) -8
    
    $v$

[^13]:    (58) The $\mathrm{C}_{9}, \mathrm{C}_{11}$ anti relative stereochemistry of the product diol was confirmed by formation of its acetonide ( $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20$ ${ }^{\circ} \mathrm{C}, 18 \mathrm{~h} ; 88 \%$ yield) which had ${ }^{13} \mathrm{C}$ NMR resonances at $\delta 100.8,24.6$, and 24.1, consistent with the desired stereochemistry (ref 27).
    (59) (a) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 5939; (b) Evans D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
    (60) For a similar observation of the effect of $\mathrm{C}_{9}, \mathrm{C}_{11}$ acetal stereochemistry in macrolactonizations of erythronolide seco-acids, see: Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1565.

[^14]:    (61) The $C_{13}$ configuration of 59 was confirmed by synthesis of a correlation compound, and comparison with material derived from the known alcohol 26 (see supplementary material for details).
    (62) Attempts to isolate the intermediate diol led to reduced yields.
    (63) Evans, D. A.; Gage, J. R. J. Org. Chem. 1992, 57, 1958.
    (64) Ozonolysis of the double bond led to a reduced yield of $60(52 \%)$ together with a number of degradation products arising from reaction of the acetal protecting group.
    (65) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, I12, 866.
    (66) For aldol reactions using tin(II) enolates, see inter alia: (a) Mukaiyama, T.; Iwasawa, N.; Stevens, R. W.; Haga, T. Tetrahedron 1984, 40, 1381. (b) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. 1986, 51, 2391 . (c) Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476. (d) ref 63.
    (67) Paterson, I.; Tillyer, R. D. Tetrahedron Lett. 1992, 33, 4233.

[^15]:    (68) For simplicity, the structure of the intermediate tin(II) enolate 61 is shown here as a monomer, assuming that there is one triflate still attached to the metal center. However, such tin(II) enolates may well be oligomeric, possibly with associated triethylamine.

[^16]:    (69) The use of the sulfoxides 33, as in the previous route, led to reduced yields in the coupling reaction with aldehyde 60 . Employing the sulfoxides 64 , however, led to a much less capricious coupling reaction.
    (70) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021.
    (71) The debenzylation reaction required ethanol as solvent, whereas the desulfoxidation reaction had to be performed in ether: use of ethanol as solvent in the desulfoxidation reaction led to cleavage of the $\mathrm{C}_{7}-\mathrm{C}_{8}$ bond.

[^17]:    (72) The seco-acids 71 and 73 were each prepared by a route analagous to that used to synthesize $\mathbf{6 8}$. For details see the supplementary material.

[^18]:    (73) A similar, albeit less dramatic, difference in macrolactonization yields for seco-acids epimeric at $\mathrm{C}_{9}$ was noted by Masamune et al. in their synthesis of 6-deoxyerythronolide B. See: Masamune, S.; Hirama, M.; Mori, S.: Ali, Sk. A.; Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568.

[^19]:    (74) 75 and 76 were prepared during studies to identify the optimum acetal protecting group for $C_{9}$ and $C_{11}$. For details see the supplementary material.

[^20]:    (75) (a) Payne, G. B.; Williams, P. H. J. Org. Chem. 1961, 26, 651. (b) Payne, G. B.; Deming, P. H.; Williams, P. H. J. Org. Chem. 1961, 26, 659.
    (76) The stereochemistry of the epoxide in 81 was established by NOE difference NMR experiments. Thus, irradiation of the ethylidene methine resulted in an NOE signal enhancement ( $8.1 \%$ ) for the epoxide hydrogens, which is consistent with $S$ configuration at $\mathrm{C}_{8}$. In addition, a transannular NOE (7.4\%) was observed from the ethylidene methine to the hydrogen on $\mathrm{C}_{5}$, which is consistent with a macrolide conformation similar to that predicted for ketone 69 by the molecular modeling studies (Figure 1).
    (77) Use of the less-reactive sulfur ylide dimethylsulfoxonium methylide (ref 46) gave lower yields of oxirane 83.
    (78) Bajwa, J. S.; Anderson, R. C. Tetrahedron Lett. 1991, 32, 3021.

[^21]:    (79) Imamoto, T.; Takeyama, T.; Koto, H. Tetrahedron Lett. 1986, 27, 3243. (b) Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 3891 .
    (80) Cheng, Y.-S.; Liu, W.-L.; Chen, S. Synthesis 1980, 223.

[^22]:    (83) Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; Jansen, A. B. A.; Walker, T. J. Chem. Soc. 1952, 1094.

